Invariants
| Base field: | $\F_{11}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 5 x + 18 x^{2} - 55 x^{3} + 121 x^{4}$ |
| Frobenius angles: | $\pm0.170748385587$, $\pm0.533728959213$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.8405.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $10$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $80$ | $16000$ | $1747520$ | $213056000$ | $26119222000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $7$ | $133$ | $1312$ | $14553$ | $162177$ | $1776358$ | $19488427$ | $214351473$ | $2358015712$ | $25937386773$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):
- $y^2=7 x^6+2 x^5+9 x^4+x^3+x^2+x+1$
- $y^2=2 x^6+4 x^5+10 x^4+6 x^3+7 x^2+8 x+6$
- $y^2=6 x^6+8 x^5+9 x^4+x^3+3 x^2+10 x+8$
- $y^2=7 x^6+10 x^5+7 x^4+4 x^3+9 x^2+10 x+7$
- $y^2=6 x^6+8 x^5+7 x^4+x^3+4 x^2+x+6$
- $y^2=3 x^6+10 x^5+7 x^4+4 x^3+3 x^2+4 x+10$
- $y^2=7 x^6+x^5+2 x^4+8 x^3+3 x^2+4 x+8$
- $y^2=10 x^6+8 x^5+x^3+7 x^2+2 x+5$
- $y^2=10 x^6+8 x^5+2 x^4+4 x^2+10 x+6$
- $y^2=10 x^6+5 x^5+4 x^4+8 x^3+x^2+5$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11}$.
Endomorphism algebra over $\F_{11}$| The endomorphism algebra of this simple isogeny class is 4.0.8405.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.11.f_s | $2$ | 2.121.l_q |