| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 2.11.am_cg |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 6 x + 11 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$0$ |
$[0, 94, 1296, 14734, 162000, 1776238, 19504800, 214413214, 2358079776, 25937619454]$ |
$36$ |
$[36, 11664, 1726596, 215737344, 26090648676, 3146721210000, 380093470112196, 45961377577058304, 5560228769732622756, 672755048952985232784]$ |
$1$ |
$1$ |
$8$ |
$8$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
1.11.ag 2 |
| 2.11.al_bz |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 51 x^{2} - 121 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$1$ |
$[1, 103, 1321, 14643, 160656, 1768123, 19470991, 214308243, 2357847691, 25937365398]$ |
$41$ |
$[41, 12505, 1755251, 214348205, 25873696816, 3132341948305, 379434616027991, 45938876013886805, 5559681522703812821, 672748459337020000000]$ |
$1$ |
$1$ |
$10$ |
$10$ |
$1$ |
\(\Q(\zeta_{5})\) |
$C_4$ |
simple |
| 2.11.al_ca |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 6 x + 11 x^{2} )( 1 - 5 x + 11 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$1$ |
$[1, 105, 1354, 14921, 162251, 1774962, 19493321, 214361041, 2357918014, 25937318505]$ |
$42$ |
$[42, 12852, 1802808, 218484000, 26131191702, 3144457713600, 379869675688902, 45950192413776000, 5559847332714983448, 672747243081668428212]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-19}) \) |
$C_2$, $C_2$ |
1.11.ag $\times$ 1.11.af |
| 2.11.ak_bt |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 45 x^{2} - 110 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$[2, 112, 1352, 14676, 160602, 1768942, 19482542, 214376868, 2358102152, 25937967552]$ |
$47$ |
$[47, 13489, 1797092, 214866281, 25865323927, 3133790594704, 379659633349967, 45953585808895625, 5560281532649043332, 672764077782820784929]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.5696.1 |
$D_{4}$ |
simple |
| 2.11.ak_bu |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 6 x + 11 x^{2} )( 1 - 4 x + 11 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$2$ |
$[2, 114, 1382, 14894, 161602, 1771938, 19487302, 214372894, 2358056642, 25937838354]$ |
$48$ |
$[48, 13824, 1839600, 218087424, 26026361328, 3139093440000, 379752329349168, 45952733531602944, 5560174219442900400, 672760726676557161984]$ |
$2$ |
$2$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-7}) \) |
$C_2$, $C_2$ |
1.11.ag $\times$ 1.11.ae |
| 2.11.ak_bv |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 5 x + 11 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$2$ |
$[2, 116, 1412, 15108, 162502, 1773686, 19481842, 214308868, 2357756252, 25937017556]$ |
$49$ |
$[49, 14161, 1882384, 221265625, 26171797729, 3142195845376, 379646013033049, 45939009972515625, 5559465921864288784, 672739437300921924241]$ |
$1$ |
$1$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
1.11.af 2 |
| 2.11.aj_bm |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 38 x^{2} - 99 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$3$ |
$[3, 117, 1332, 14425, 159693, 1768182, 19486911, 214376689, 2357947692, 25937131077]$ |
$52$ |
$[52, 13936, 1769872, 211214016, 25719331612, 3132446896384, 379744766941228, 45953547054914304, 5559917317647236752, 672742381710223208176]$ |
$2$ |
$2$ |
$4$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}, \sqrt{17})\) |
$C_2^2$ |
simple |
| 2.11.aj_bn |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 39 x^{2} - 99 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 119, 1359, 14595, 160368, 1770275, 19494345, 214411603, 2358097785, 25937585174]$ |
$53$ |
$[53, 14257, 1807247, 213698173, 25827579248, 3136150056793, 379889663866283, 45961032196550133, 5560271234957193833, 672754159756611135232]$ |
$1$ |
$1$ |
$2$ |
$2$ |
$1$ |
4.0.26533.1 |
$D_{4}$ |
simple |
| 2.11.aj_bo |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 6 x + 11 x^{2} )( 1 - 3 x + 11 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 121, 1386, 14761, 160953, 1771378, 19494723, 214410001, 2358099486, 25937515801]$ |
$54$ |
$[54, 14580, 1844856, 216133920, 25921530954, 3138100056000, 379897009061274, 45960688754686080, 5560275246183319896, 672752360451014464500]$ |
$2$ |
$2$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-35}) \) |
$C_2$, $C_2$ |
1.11.ag $\times$ 1.11.ad |
| 2.11.aj_bp |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 41 x^{2} - 99 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 123, 1413, 14923, 161448, 1771503, 19488423, 214377763, 2358012573, 25937365398]$ |
$55$ |
$[55, 14905, 1882705, 218522205, 26001250000, 3138320501305, 379774219636405, 45953777683469205, 5560070301147558955, 672748459337020000000]$ |
$3$ |
$3$ |
$10$ |
$10$ |
$1$ |
\(\Q(\zeta_{5})\) |
$C_4$ |
simple |
| 2.11.aj_bq |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 5 x + 11 x^{2} )( 1 - 4 x + 11 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$3$ |
$[3, 125, 1440, 15081, 161853, 1770662, 19475823, 214320721, 2357894880, 25937537405]$ |
$56$ |
$[56, 15232, 1920800, 220864000, 26066804456, 3136835430400, 379528735785416, 45941550471936000, 5559792786167463200, 672752920739362621312]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-7}) \) |
$C_2$, $C_2$ |
1.11.af $\times$ 1.11.ae |
| 2.11.ai_bg |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 32 x^{2} - 88 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 122, 1324, 14358, 160004, 1771562, 19496684, 214377118, 2357916004, 25937424602]$ |
$58$ |
$[58, 14500, 1760938, 210250000, 25769191258, 3138431750500, 379935240802378, 45953639424000000, 5559842595347832058, 672749994932236862500]$ |
$3$ |
$3$ |
$6$ |
$24$ |
$4$ |
\(\Q(i, \sqrt{6})\) |
$C_2^2$ |
simple |
| 2.11.ai_bh |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - 8 x + 33 x^{2} - 88 x^{3} + 121 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$4$ |
$[4, 124, 1348, 14484, 160404, 1772758, 19502284, 214402404, 2357980828, 25937438604]$ |
$59$ |
$[59, 14809, 1793600, 212079689, 25833279859, 3140550553600, 380044419083339, 45959060061139529, 5559995444950145600, 672750358072070821609]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.5225.1 |
$D_{4}$ |
simple |
| 2.11.ai_bi |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 6 x + 11 x^{2} )( 1 - 2 x + 11 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 126, 1372, 14606, 160724, 1773198, 19503404, 214408606, 2357977252, 25937200926]$ |
$60$ |
$[60, 15120, 1826460, 213857280, 25884541500, 3141328554000, 380066253715740, 45960389686149120, 5559987016732558140, 672744193373765898000]$ |
$8$ |
$8$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-10}) \) |
$C_2$, $C_2$ |
1.11.ag $\times$ 1.11.ac |
| 2.11.ai_bj |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 35 x^{2} - 88 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 128, 1396, 14724, 160964, 1772894, 19500380, 214400260, 2357944300, 25936950368]$ |
$61$ |
$[61, 15433, 1859524, 215583577, 25923018781, 3140788102672, 380007301885909, 45958600415667753, 5559909320049903844, 672737694627725025673]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.62352.1 |
$D_{4}$ |
simple |
| 2.11.ai_bk |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 36 x^{2} - 88 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 130, 1420, 14838, 161124, 1771858, 19493548, 214381854, 2357919268, 25936895490]$ |
$62$ |
$[62, 15748, 1892798, 217259408, 25948758382, 3138951848068, 379874132864078, 45954654361751552, 5559850292795022878, 672736271248784205508]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.35072.1 |
$D_{4}$ |
simple |
| 2.11.ai_bl |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 5 x + 11 x^{2} )( 1 - 3 x + 11 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$4$ |
$[4, 132, 1444, 14948, 161204, 1770102, 19483244, 214357828, 2357937724, 25937214852]$ |
$63$ |
$[63, 16065, 1926288, 218885625, 25961811183, 3135842760960, 379673330311863, 45949503759035625, 5559893805977351568, 672744554610891926625]$ |
$6$ |
$6$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-35}) \) |
$C_2$, $C_2$ |
1.11.af $\times$ 1.11.ad |
| 2.11.ai_bm |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 4 x + 11 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$4$ |
$[4, 134, 1468, 15054, 161204, 1767638, 19469804, 214332574, 2358033508, 25938057254]$ |
$64$ |
$[64, 16384, 1960000, 220463104, 25962232384, 3131484160000, 379411494766144, 45944091111849984, 5560119669688360000, 672766404448046301184]$ |
$3$ |
$3$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
1.11.ae 2 |
| 2.11.ah_z |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 25 x^{2} - 77 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 123, 1283, 14219, 160240, 1772559, 19487809, 214327075, 2357884139, 25937703318]$ |
$63$ |
$[63, 14553, 1707993, 208238877, 25807119408, 3140194662297, 379762271603757, 45942912351151893, 5559767463949717347, 672757224167283349248]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.72557.1 |
$D_{4}$ |
simple |
| 2.11.ah_ba |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 26 x^{2} - 77 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 125, 1304, 14313, 160555, 1774118, 19496041, 214356049, 2357954216, 25937917565]$ |
$64$ |
$[64, 14848, 1735936, 209594368, 25857751744, 3142960734208, 379922722945984, 45949122621775872, 5559932695630384384, 672762781232406481408]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.40293.1 |
$D_{4}$ |
simple |
| 2.11.ah_bb |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 27 x^{2} - 77 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 127, 1325, 14403, 160800, 1775107, 19501235, 214371123, 2357957135, 25937814102]$ |
$65$ |
$[65, 15145, 1764035, 210894125, 25897066000, 3144715205905, 380023969959335, 45952353789519125, 5559939576013933565, 672760097642165728000]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.206045.1 |
$D_{4}$ |
simple |
| 2.11.ah_bc |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 6 x + 11 x^{2} )( 1 - x + 11 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 129, 1346, 14489, 160975, 1775538, 19503685, 214375729, 2357918726, 25937540529]$ |
$66$ |
$[66, 15444, 1792296, 212138784, 25925084526, 3145479480000, 380071732087806, 45953341316049024, 5559849011620762056, 672753001834059172884]$ |
$3$ |
$3$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-43}) \) |
$C_2$, $C_2$ |
1.11.ag $\times$ 1.11.ab |
| 2.11.ah_bd |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 29 x^{2} - 77 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 131, 1367, 14571, 161080, 1775423, 19503685, 214373251, 2357863307, 25937221526]$ |
$67$ |
$[67, 15745, 1820725, 213329005, 25941832912, 3145275126625, 380071732355137, 45952810361641845, 5559718341588279775, 672744727725974368000]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.196245.1 |
$D_{4}$ |
simple |
| 2.11.ah_be |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 30 x^{2} - 77 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 133, 1388, 14649, 161115, 1774774, 19501529, 214367025, 2357813684, 25936959093]$ |
$68$ |
$[68, 16048, 1849328, 214465472, 25947340108, 3144123903232, 380029698717212, 45951475832008448, 5559601338333581552, 672737920931822176048]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.39593.1 |
$D_{4}$ |
simple |
| 2.11.ah_bf |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 31 x^{2} - 77 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 135, 1409, 14723, 161080, 1773603, 19497511, 214360339, 2357791151, 25936832790]$ |
$69$ |
$[69, 16353, 1878111, 215548893, 25941638544, 3142047775113, 379951365555579, 45950042437133877, 5559548208784903449, 672734644992382295808]$ |
$5$ |
$5$ |
$2$ |
$2$ |
$1$ |
4.0.110357.1 |
$D_{4}$ |
simple |
| 2.11.ah_bg |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 5 x + 11 x^{2} )( 1 - 2 x + 11 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 137, 1430, 14793, 160975, 1771922, 19491925, 214356433, 2357815490, 25936899977]$ |
$70$ |
$[70, 16660, 1907080, 216580000, 25924764250, 3139068936640, 379842475317130, 45949204763280000, 5559605596299406120, 672736387628404676500]$ |
$4$ |
$4$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-10}) \) |
$C_2$, $C_2$ |
1.11.af $\times$ 1.11.ac |
| 2.11.ah_bh |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - 7 x + 33 x^{2} - 77 x^{3} + 121 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$5$ |
$[5, 139, 1451, 14859, 160800, 1769743, 19485065, 214358499, 2357904971, 25937196054]$ |
$71$ |
$[71, 16969, 1936241, 217559549, 25896756976, 3135209833225, 379708780304981, 45949647359340629, 5559816583395351611, 672744067024272035584]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.21725.1 |
$D_{4}$ |
simple |
| 2.11.ah_bi |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 4 x + 11 x^{2} )( 1 - 3 x + 11 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$5$ |
$[5, 141, 1472, 14921, 160555, 1767078, 19477225, 214369681, 2358076352, 25937734701]$ |
$72$ |
$[72, 17280, 1965600, 218488320, 25857660312, 3130493184000, 379556044625592, 45952044838778880, 5560220695437626400, 672758038151896752000]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-35}) \) |
$C_2$, $C_2$ |
1.11.ae $\times$ 1.11.ad |
| 2.11.ag_s |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 18 x^{2} - 66 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$6$ |
$[6, 122, 1242, 14190, 160686, 1771562, 19474818, 214315294, 2357952822, 25937424602]$ |
$68$ |
$[68, 14416, 1655732, 207821056, 25878546548, 3138426760144, 379509165371012, 45940387292319744, 5559929409777049892, 672749994945773415376]$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
\(\Q(i, \sqrt{13})\) |
$C_2^2$ |
simple |
| 2.11.ag_t |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 19 x^{2} - 66 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 124, 1260, 14260, 160986, 1773430, 19483134, 214341028, 2358048564, 25937876524]$ |
$69$ |
$[69, 14697, 1679184, 208829673, 25927023309, 3141739830528, 379671182865141, 45945902956345353, 5560155171605311056, 672761716727880170457]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.13968.2 |
$D_{4}$ |
simple |
| 2.11.ag_u |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 20 x^{2} - 66 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 126, 1278, 14326, 161226, 1774878, 19489266, 214354846, 2358079398, 25938032526]$ |
$70$ |
$[70, 14980, 1702750, 209779920, 25965766750, 3144308366500, 379790664241030, 45948864511226880, 5560227877758877750, 672765763059421454500]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.348480.1 |
$D_{4}$ |
simple |
| 2.11.ag_v |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 21 x^{2} - 66 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 128, 1296, 14388, 161406, 1775918, 19493466, 214359268, 2358062496, 25937993648]$ |
$71$ |
$[71, 15265, 1726436, 210672265, 25994784191, 3146153380240, 379872513083351, 45949812198728265, 5560188022020297476, 672764754652325040625]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.424000.2 |
$D_{4}$ |
simple |
| 2.11.ag_w |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
|
✓ |
|
✓ |
✓ |
$( 1 - 6 x + 11 x^{2} )( 1 + 11 x^{2} )$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$6$ |
$[6, 130, 1314, 14446, 161526, 1776562, 19495986, 214356766, 2358013734, 25937844130]$ |
$72$ |
$[72, 15552, 1750248, 211507200, 26014085352, 3147295953600, 379921632491592, 45949275913420800, 5560073041789601928, 672760876491684395712]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-11}) \) |
$C_2$, $C_2$ |
1.11.ag $\times$ 1.11.a |
| 2.11.ag_x |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 23 x^{2} - 66 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$6$ |
$[6, 132, 1332, 14500, 161586, 1776822, 19497078, 214349764, 2357947692, 25937651652]$ |
$73$ |
$[73, 15841, 1774192, 212285241, 26023682473, 3147757252864, 379942925705857, 45947775208065129, 5559917317706062192, 672755884050430171201]$ |
$9$ |
$9$ |
$6$ |
$24$ |
$6$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
| 2.11.ag_y |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 24 x^{2} - 66 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 134, 1350, 14550, 161586, 1776710, 19496994, 214340638, 2357877654, 25937467574]$ |
$74$ |
$[74, 16132, 1798274, 213006928, 26023590434, 3147558544228, 379941296838506, 45945819304915968, 5559752173395934586, 672751109502512533732]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.417088.1 |
$D_{4}$ |
simple |
| 2.11.ag_z |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 25 x^{2} - 66 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$6$ |
$[6, 136, 1368, 14596, 161526, 1776238, 19495986, 214331716, 2357815608, 25937327176]$ |
$75$ |
$[75, 16425, 1822500, 213672825, 26013826875, 3146721210000, 379921651716675, 45943907113816425, 5559605875406722500, 672747467936585135625]$ |
$11$ |
$11$ |
$8$ |
$24$ |
$3$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
$C_2^2$ |
simple |
| 2.11.ag_ba |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 26 x^{2} - 66 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 138, 1386, 14638, 161406, 1775418, 19494306, 214325278, 2357772246, 25937249898]$ |
$76$ |
$[76, 16720, 1846876, 214283520, 25994412316, 3145266765520, 379888898840716, 45942527257989120, 5559503633396462956, 672745463572852450000]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.18000.1 |
$C_4$ |
simple |
| 2.11.ag_bb |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 5 x + 11 x^{2} )( 1 - x + 11 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 140, 1404, 14676, 161226, 1774262, 19492206, 214323556, 2357756964, 25937239580]$ |
$77$ |
$[77, 17017, 1871408, 214839625, 25965370277, 3143216876800, 379847950463597, 45942158108471625, 5559467600654892848, 672745195986494768137]$ |
$6$ |
$6$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-43}) \) |
$C_2$, $C_2$ |
1.11.af $\times$ 1.11.ab |
| 2.11.ag_bc |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 28 x^{2} - 66 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 142, 1422, 14710, 160986, 1772782, 19489938, 214328734, 2357777862, 25937284702]$ |
$78$ |
$[78, 17316, 1896102, 215341776, 25926727398, 3140593378884, 379803723796302, 45943267828184064, 5559516875042058942, 672746366341923006276]$ |
$10$ |
$10$ |
$2$ |
$2$ |
$1$ |
4.0.131904.1 |
$D_{4}$ |
simple |
| 2.11.ag_bd |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 29 x^{2} - 66 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 144, 1440, 14740, 160686, 1770990, 19487754, 214342948, 2357841744, 25937358624]$ |
$79$ |
$[79, 17617, 1920964, 215790633, 25878513559, 3137418294928, 379761142344271, 45946314426657033, 5559667500439007716, 672748283643042224257]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.65088.2 |
$D_{4}$ |
simple |
| 2.11.ag_be |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 4 x + 11 x^{2} )( 1 - 2 x + 11 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$6$ |
$[6, 146, 1458, 14766, 160326, 1768898, 19485906, 214368286, 2357954118, 25937419826]$ |
$80$ |
$[80, 17920, 1946000, 216186880, 25820762000, 3133713856000, 379725137379920, 45951745826488320, 5559932468814626000, 672749871005722048000]$ |
$4$ |
$4$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-10}) \) |
$C_2$, $C_2$ |
1.11.ae $\times$ 1.11.ac |
| 2.11.ag_bf |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 3 x + 11 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$6$ |
$[6, 148, 1476, 14788, 159906, 1766518, 19484646, 214406788, 2358119196, 25937412148]$ |
$81$ |
$[81, 18225, 1971216, 216531225, 25753509441, 3129502521600, 379700649556281, 45959999942637225, 5560321723022501136, 672749671959787640625]$ |
$5$ |
$5$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-35}) \) |
$C_2$ |
1.11.ad 2 |
| 2.11.af_m |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 12 x^{2} - 55 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$7$ |
$[7, 121, 1222, 14313, 161277, 1770706, 19475407, 214362513, 2358032722, 25937262681]$ |
$74$ |
$[74, 14356, 1630664, 209597600, 25973605654, 3136914859456, 379520631994214, 45950508588713600, 5560117814585948264, 672745795157496164116]$ |
$2$ |
$2$ |
$2$ |
$2$ |
$1$ |
4.0.236600.1 |
$D_{4}$ |
simple |
| 2.11.af_n |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 13 x^{2} - 55 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$7$ |
$[7, 123, 1237, 14363, 161552, 1772343, 19480727, 214377763, 2358108337, 25937533398]$ |
$75$ |
$[75, 14625, 1649925, 210322125, 26018130000, 3139815524625, 379624256977425, 45953777661787125, 5560296117048019575, 672752816824140000000]$ |
$5$ |
$5$ |
$2$ |
$2$ |
$1$ |
4.0.18605.1 |
$D_{4}$ |
simple |
| 2.11.af_o |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 14 x^{2} - 55 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$7$ |
$[7, 125, 1252, 14409, 161777, 1773686, 19484507, 214383889, 2358139132, 25937628125]$ |
$76$ |
$[76, 14896, 1669264, 210986944, 26054551876, 3142195845376, 379697887884916, 45955090747125504, 5560368732876601744, 672755273810511468976]$ |
$7$ |
$7$ |
$6$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}, \sqrt{-19})\) |
$C_2^2$ |
simple |
| 2.11.af_p |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 15 x^{2} - 55 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$7$ |
$[7, 127, 1267, 14451, 161952, 1774747, 19486957, 214382643, 2358135997, 25937612502]$ |
$77$ |
$[77, 15169, 1688687, 211592381, 26082870352, 3144076824889, 379745616403307, 45954823512723125, 5560361340404247377, 672754868614566056704]$ |
$7$ |
$7$ |
$2$ |
$2$ |
$1$ |
4.0.755621.1 |
$D_{4}$ |
simple |
| 2.11.af_q |
$2$ |
$\F_{11}$ |
$11$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 6 x + 11 x^{2} )( 1 + x + 11 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$7$ |
$[7, 129, 1282, 14489, 162077, 1775538, 19488287, 214375729, 2358108742, 25937540529]$ |
$78$ |
$[78, 15444, 1708200, 212138784, 26103086178, 3145479480000, 379771532895378, 45953341316049024, 5560297071958441800, 672753001834059172884]$ |
$4$ |
$4$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-43}) \) |
$C_2$, $C_2$ |
1.11.ag $\times$ 1.11.b |
| 2.11.af_r |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 17 x^{2} - 55 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$7$ |
$[7, 131, 1297, 14523, 162152, 1776071, 19488707, 214364803, 2358066097, 25937454806]$ |
$79$ |
$[79, 15721, 1727809, 212626525, 26115201904, 3146424851641, 379779726598309, 45950999197389525, 5560196513614612819, 672750778393190607616]$ |
$9$ |
$9$ |
$2$ |
$2$ |
$1$ |
4.0.10525.1 |
$D_{4}$ |
simple |
| 2.11.af_s |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 18 x^{2} - 55 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$7$ |
$[7, 133, 1312, 14553, 162177, 1776358, 19488427, 214351473, 2358015712, 25937386773]$ |
$80$ |
$[80, 16000, 1747520, 213056000, 26119222000, 3146934016000, 379774285897520, 45948141875456000, 5560077704924386880, 672749013766810000000]$ |
$10$ |
$10$ |
$2$ |
$2$ |
$1$ |
4.0.8405.1 |
$D_{4}$ |
simple |
| 2.11.af_t |
$2$ |
$\F_{11}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 19 x^{2} - 55 x^{3} + 121 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$7$ |
$[7, 135, 1327, 14579, 162152, 1776411, 19487657, 214337299, 2357964157, 25937356950]$ |
$81$ |
$[81, 16281, 1767339, 213427629, 26115152976, 3147028096401, 379759298681151, 45945103745882709, 5559956138644825869, 672748240202282002176]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.795389.1 |
$D_{4}$ |
simple |