Properties

Label 2.107.ac_afc
Base field $\F_{107}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{107}$
Dimension:  $2$
L-polynomial:  $1 - 2 x - 132 x^{2} - 214 x^{3} + 11449 x^{4}$
Frobenius angles:  $\pm0.102347107508$, $\pm0.824658098163$
Angle rank:  $2$ (numerical)
Number field:  4.0.9655838528.1
Galois group:  $D_{4}$
Jacobians:  128

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 128 curves (of which all are hyperelliptic), and hence is principally polarizable:

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $11102$ $128050468$ $1498966516502$ $17182793687228624$ $196712182233607083862$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $106$ $11182$ $1223602$ $131086710$ $14025306726$ $1500733628686$ $160578144435262$ $17181862097992350$ $1838459215707636202$ $196715135736884363262$

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{107}$
The endomorphism algebra of this simple isogeny class is 4.0.9655838528.1.
All geometric endomorphisms are defined over $\F_{107}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension degreeCommon base change
2.107.c_afc$2$(not in LMFDB)