Properties

Label 2.243.ach_cad
Base field $\F_{3^{5}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{3^{5}}$
Dimension:  $2$
L-polynomial:  $1 - 59 x + 1355 x^{2} - 14337 x^{3} + 59049 x^{4}$
Frobenius angles:  $\pm0.0603613529792$, $\pm0.135810896964$
Angle rank:  $2$ (numerical)
Number field:  4.0.143725.1
Galois group:  $D_{4}$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $46009$ $3441519209$ $205768419749419$ $12157422341643401581$ $717897909908009564825264$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $185$ $58279$ $14340353$ $3486714675$ $847288517640$ $205891144032043$ $50031545433188511$ $12157665465400016339$ $2954312706648817373099$ $717897987693125115699814$

Jacobians and polarizations

This isogeny class contains a Jacobian, and hence is principally polarizable.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3^{5}}$.

Endomorphism algebra over $\F_{3^{5}}$
The endomorphism algebra of this simple isogeny class is 4.0.143725.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.243.ch_cad$2$(not in LMFDB)