Properties

Label 2.16.ah_bc
Base field $\F_{2^{4}}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2^{4}}$
Dimension:  $2$
L-polynomial:  $1 - 7 x + 28 x^{2} - 112 x^{3} + 256 x^{4}$
Frobenius angles:  $\pm0.109519428602$, $\pm0.521148502204$
Angle rank:  $2$ (numerical)
Number field:  4.0.122525.1
Galois group:  $D_{4}$
Jacobians:  $4$

This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $166$ $67064$ $16414246$ $4256283824$ $1100534194126$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $10$ $264$ $4006$ $64944$ $1049550$ $16788648$ $268445110$ $4294975584$ $68720295646$ $1099515282904$

Jacobians and polarizations

This isogeny class contains the Jacobians of 4 curves (of which all are hyperelliptic), and hence is principally polarizable:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{4}}$.

Endomorphism algebra over $\F_{2^{4}}$
The endomorphism algebra of this simple isogeny class is 4.0.122525.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.16.h_bc$2$2.256.h_akm