Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
1.79.ar |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$63$ |
$[63, 6111, 492156, 38945403, 3077046693, 243087660144, 19203913231587, 1517108865913683, 119851596599350644, 9468276088686734151]$ |
$63$ |
$[63, 6111, 492156, 38945403, 3077046693, 243087660144, 19203913231587, 1517108865913683, 119851596599350644, 9468276088686734151]$ |
$2$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.79.aq |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$64$ |
$[64, 6144, 492736, 38952960, 3077126464, 243088349184, 19203917749696, 1517108879523840, 119851596404175424, 9468276083871995904]$ |
$64$ |
$[64, 6144, 492736, 38952960, 3077126464, 243088349184, 19203917749696, 1517108879523840, 119851596404175424, 9468276083871995904]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-15}) \) |
$C_2$ |
simple |
1.79.ap |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$65$ |
$[65, 6175, 493220, 38958075, 3077162075, 243088409200, 19203914943005, 1517108823918675, 119851595722209260, 9468276077613754375]$ |
$65$ |
$[65, 6175, 493220, 38958075, 3077162075, 243088409200, 19203914943005, 1517108823918675, 119851595722209260, 9468276077613754375]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-91}) \) |
$C_2$ |
simple |
1.79.ao |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$66$ |
$[66, 6204, 493614, 38961120, 3077165586, 243088112124, 19203909552894, 1517108765969280, 119851595322724386, 9468276076859377404]$ |
$66$ |
$[66, 6204, 493614, 38961120, 3077165586, 243088112124, 19203909552894, 1517108765969280, 119851595322724386, 9468276076859377404]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-30}) \) |
$C_2$ |
simple |
1.79.an |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$67$ |
$[67, 6231, 493924, 38962443, 3077147257, 243087660144, 19203904468543, 1517108735012403, 119851595365885996, 9468276080525965551]$ |
$67$ |
$[67, 6231, 493924, 38962443, 3077147257, 243087660144, 19203904468543, 1517108735012403, 119851595365885996, 9468276080525965551]$ |
$3$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.79.am |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$68$ |
$[68, 6256, 494156, 38962368, 3077115668, 243087196144, 19203901191452, 1517108736860928, 119851595721852644, 9468276085268264176]$ |
$68$ |
$[68, 6256, 494156, 38962368, 3077115668, 243087196144, 19203901191452, 1517108736860928, 119851595721852644, 9468276085268264176]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
1.79.al |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$69$ |
$[69, 6279, 494316, 38961195, 3077077839, 243086813424, 19203900229401, 1517108764307955, 119851596172817604, 9468276088321329279]$ |
$69$ |
$[69, 6279, 494316, 38961195, 3077077839, 243086813424, 19203900229401, 1517108764307955, 119851596172817604, 9468276088321329279]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-195}) \) |
$C_2$ |
simple |
1.79.ak |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$70$ |
$[70, 6300, 494410, 38959200, 3077039350, 243086564700, 19203901424890, 1517108804668800, 119851596527581030, 9468276088490257500]$ |
$70$ |
$[70, 6300, 494410, 38959200, 3077039350, 243086564700, 19203901424890, 1517108804668800, 119851596527581030, 9468276088490257500]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
1.79.aj |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$71$ |
$[71, 6319, 494444, 38956635, 3077004461, 243086470384, 19203904223099, 1517108844864915, 119851596673525316, 9468276086083300279]$ |
$71$ |
$[71, 6319, 494444, 38956635, 3077004461, 243086470384, 19203904223099, 1517108844864915, 119851596673525316, 9468276086083300279]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-235}) \) |
$C_2$ |
simple |
1.79.ai |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$72$ |
$[72, 6336, 494424, 38953728, 3076976232, 243086526144, 19203907884408, 1517108874513408, 119851596586511496, 9468276082354051776]$ |
$72$ |
$[72, 6336, 494424, 38953728, 3076976232, 243086526144, 19203907884408, 1517108874513408, 119851596586511496, 9468276082354051776]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.79.ah |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$73$ |
$[73, 6351, 494356, 38950683, 3076956643, 243086709744, 19203911646517, 1517108887445523, 119851596315222844, 9468276078829500951]$ |
$73$ |
$[73, 6351, 494356, 38950683, 3076956643, 243086709744, 19203911646517, 1517108887445523, 119851596315222844, 9468276078829500951]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-267}) \) |
$C_2$ |
simple |
1.79.ag |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$74$ |
$[74, 6364, 494246, 38947680, 3076946714, 243086987164, 19203914841206, 1517108882037120, 119851595952853034, 9468276076749941404]$ |
$74$ |
$[74, 6364, 494246, 38947680, 3076946714, 243086987164, 19203914841206, 1517108882037120, 119851595952853034, 9468276076749941404]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-70}) \) |
$C_2$ |
simple |
1.79.af |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$75$ |
$[75, 6375, 494100, 38944875, 3076946625, 243087318000, 19203916970775, 1517108860693875, 119851595605770300, 9468276076730409375]$ |
$75$ |
$[75, 6375, 494100, 38944875, 3076946625, 243087318000, 19203916970775, 1517108860693875, 119851595605770300, 9468276076730409375]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-291}) \) |
$C_2$ |
simple |
1.79.ae |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$76$ |
$[76, 6384, 493924, 38942400, 3076955836, 243087660144, 19203917749204, 1517108828793600, 119851595365885996, 9468276078667841904]$ |
$76$ |
$[76, 6384, 493924, 38942400, 3076955836, 243087660144, 19203917749204, 1517108828793600, 119851595365885996, 9468276078667841904]$ |
$10$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.79.ad |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$77$ |
$[77, 6391, 493724, 38940363, 3076973207, 243087973744, 19203917113073, 1517108793347763, 119851595290915796, 9468276081859884751]$ |
$77$ |
$[77, 6391, 493724, 38940363, 3076973207, 243087973744, 19203917113073, 1517108793347763, 119851595290915796, 9468276081859884751]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-307}) \) |
$C_2$ |
simple |
1.79.ac |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$78$ |
$[78, 6396, 493506, 38938848, 3076997118, 243088224444, 19203915207282, 1517108761603968, 119851595394544494, 9468276085266604476]$ |
$78$ |
$[78, 6396, 493506, 38938848, 3076997118, 243088224444, 19203915207282, 1517108761603968, 119851595394544494, 9468276085266604476]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-78}) \) |
$C_2$ |
simple |
1.79.ab |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$79$ |
$[79, 6399, 493276, 38937915, 3077025589, 243088385904, 19203912350611, 1517108739770835, 119851595646690964, 9468276087831642279]$ |
$79$ |
$[79, 6399, 493276, 38937915, 3077025589, 243088385904, 19203912350611, 1517108739770835, 119851595646690964, 9468276087831642279]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \) |
$C_2$ |
simple |
1.79.a |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 79 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$80$ |
$[80, 6400, 493040, 38937600, 3077056400, 243088441600, 19203908986160, 1517108732006400, 119851595982618320, 9468276088780960000]$ |
$80$ |
$[80, 6400, 493040, 38937600, 3077056400, 243088441600, 19203908986160, 1517108732006400, 119851595982618320, 9468276088780960000]$ |
$10$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-79}) \) |
$C_2$ |
simple |
1.79.b |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$81$ |
$[81, 6399, 492804, 38937915, 3077087211, 243088385904, 19203905621709, 1517108739770835, 119851596318545676, 9468276087831642279]$ |
$81$ |
$[81, 6399, 492804, 38937915, 3077087211, 243088385904, 19203905621709, 1517108739770835, 119851596318545676, 9468276087831642279]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \) |
$C_2$ |
simple |
1.79.c |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$82$ |
$[82, 6396, 492574, 38938848, 3077115682, 243088224444, 19203902765038, 1517108761603968, 119851596570692146, 9468276085266604476]$ |
$82$ |
$[82, 6396, 492574, 38938848, 3077115682, 243088224444, 19203902765038, 1517108761603968, 119851596570692146, 9468276085266604476]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-78}) \) |
$C_2$ |
simple |
1.79.d |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$83$ |
$[83, 6391, 492356, 38940363, 3077139593, 243087973744, 19203900859247, 1517108793347763, 119851596674320844, 9468276081859884751]$ |
$83$ |
$[83, 6391, 492356, 38940363, 3077139593, 243087973744, 19203900859247, 1517108793347763, 119851596674320844, 9468276081859884751]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-307}) \) |
$C_2$ |
simple |
1.79.e |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$84$ |
$[84, 6384, 492156, 38942400, 3077156964, 243087660144, 19203900223116, 1517108828793600, 119851596599350644, 9468276078667841904]$ |
$84$ |
$[84, 6384, 492156, 38942400, 3077156964, 243087660144, 19203900223116, 1517108828793600, 119851596599350644, 9468276078667841904]$ |
$10$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.79.f |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$85$ |
$[85, 6375, 491980, 38944875, 3077166175, 243087318000, 19203901001545, 1517108860693875, 119851596359466340, 9468276076730409375]$ |
$85$ |
$[85, 6375, 491980, 38944875, 3077166175, 243087318000, 19203901001545, 1517108860693875, 119851596359466340, 9468276076730409375]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-291}) \) |
$C_2$ |
simple |
1.79.g |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$86$ |
$[86, 6364, 491834, 38947680, 3077166086, 243086987164, 19203903131114, 1517108882037120, 119851596012383606, 9468276076749941404]$ |
$86$ |
$[86, 6364, 491834, 38947680, 3077166086, 243086987164, 19203903131114, 1517108882037120, 119851596012383606, 9468276076749941404]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-70}) \) |
$C_2$ |
simple |
1.79.h |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$87$ |
$[87, 6351, 491724, 38950683, 3077156157, 243086709744, 19203906325803, 1517108887445523, 119851595650013796, 9468276078829500951]$ |
$87$ |
$[87, 6351, 491724, 38950683, 3077156157, 243086709744, 19203906325803, 1517108887445523, 119851595650013796, 9468276078829500951]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-267}) \) |
$C_2$ |
simple |
1.79.i |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$88$ |
$[88, 6336, 491656, 38953728, 3077136568, 243086526144, 19203910087912, 1517108874513408, 119851595378725144, 9468276082354051776]$ |
$88$ |
$[88, 6336, 491656, 38953728, 3077136568, 243086526144, 19203910087912, 1517108874513408, 119851595378725144, 9468276082354051776]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.79.j |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$89$ |
$[89, 6319, 491636, 38956635, 3077108339, 243086470384, 19203913749221, 1517108844864915, 119851595291711324, 9468276086083300279]$ |
$89$ |
$[89, 6319, 491636, 38956635, 3077108339, 243086470384, 19203913749221, 1517108844864915, 119851595291711324, 9468276086083300279]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-235}) \) |
$C_2$ |
simple |
1.79.k |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$90$ |
$[90, 6300, 491670, 38959200, 3077073450, 243086564700, 19203916547430, 1517108804668800, 119851595437655610, 9468276088490257500]$ |
$90$ |
$[90, 6300, 491670, 38959200, 3077073450, 243086564700, 19203916547430, 1517108804668800, 119851595437655610, 9468276088490257500]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
1.79.l |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$91$ |
$[91, 6279, 491764, 38961195, 3077034961, 243086813424, 19203917742919, 1517108764307955, 119851595792419036, 9468276088321329279]$ |
$91$ |
$[91, 6279, 491764, 38961195, 3077034961, 243086813424, 19203917742919, 1517108764307955, 119851595792419036, 9468276088321329279]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-195}) \) |
$C_2$ |
simple |
1.79.m |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$92$ |
$[92, 6256, 491924, 38962368, 3076997132, 243087196144, 19203916780868, 1517108736860928, 119851596243383996, 9468276085268264176]$ |
$92$ |
$[92, 6256, 491924, 38962368, 3076997132, 243087196144, 19203916780868, 1517108736860928, 119851596243383996, 9468276085268264176]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
1.79.n |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$93$ |
$[93, 6231, 492156, 38962443, 3076965543, 243087660144, 19203913503777, 1517108735012403, 119851596599350644, 9468276080525965551]$ |
$93$ |
$[93, 6231, 492156, 38962443, 3076965543, 243087660144, 19203913503777, 1517108735012403, 119851596599350644, 9468276080525965551]$ |
$3$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.79.o |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$94$ |
$[94, 6204, 492466, 38961120, 3076947214, 243088112124, 19203908419426, 1517108765969280, 119851596642512254, 9468276076859377404]$ |
$94$ |
$[94, 6204, 492466, 38961120, 3076947214, 243088112124, 19203908419426, 1517108765969280, 119851596642512254, 9468276076859377404]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-30}) \) |
$C_2$ |
simple |
1.79.p |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$95$ |
$[95, 6175, 492860, 38958075, 3076950725, 243088409200, 19203903029315, 1517108823918675, 119851596243027380, 9468276077613754375]$ |
$95$ |
$[95, 6175, 492860, 38958075, 3076950725, 243088409200, 19203903029315, 1517108823918675, 119851596243027380, 9468276077613754375]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-91}) \) |
$C_2$ |
simple |
1.79.q |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 16 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$96$ |
$[96, 6144, 493344, 38952960, 3076986336, 243088349184, 19203900222624, 1517108879523840, 119851595561061216, 9468276083871995904]$ |
$96$ |
$[96, 6144, 493344, 38952960, 3076986336, 243088349184, 19203900222624, 1517108879523840, 119851595561061216, 9468276083871995904]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-15}) \) |
$C_2$ |
simple |
1.79.r |
$1$ |
$\F_{79}$ |
$79$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 17 x + 79 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$97$ |
$[97, 6111, 493924, 38945403, 3077066107, 243087660144, 19203904740733, 1517108865913683, 119851595365885996, 9468276088686734151]$ |
$97$ |
$[97, 6111, 493924, 38945403, 3077066107, 243087660144, 19203904740733, 1517108865913683, 119851595365885996, 9468276088686734151]$ |
$2$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |