# Properties

 Label 1.73.ar Base Field $\F_{73}$ Dimension $1$ Ordinary Yes $p$-rank $1$ Principally polarizable Yes Contains a Jacobian Yes

## Invariants

 Base field: $\F_{73}$ Dimension: $1$ L-polynomial: $1 - 17 x + 73 x^{2}$ Frobenius angles: $\pm0.0323195869136$ Angle rank: $1$ (numerical) Number field: $$\Q(\sqrt{-3})$$ Galois group: $C_2$ Jacobians: 1

This isogeny class is simple and geometrically simple.

## Newton polygon

This isogeny class is ordinary.

 $p$-rank: $1$ Slopes: $[0, 1]$

## Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 57 5187 387828 28388451 2072992017 151333588224 11047393481097 806460052826883 58871586411899604 4297625827517201907

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 57 5187 387828 28388451 2072992017 151333588224 11047393481097 806460052826883 58871586411899604 4297625827517201907

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{73}$
 The endomorphism algebra of this simple isogeny class is $$\Q(\sqrt{-3})$$.
All geometric endomorphisms are defined over $\F_{73}$.

## Base change

This is a primitive isogeny class.

## Twists

Below are some of the twists of this isogeny class.
 Twist Extension Degree Common base change 1.73.r $2$ (not in LMFDB) 1.73.h $3$ (not in LMFDB) 1.73.k $3$ (not in LMFDB)
Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 1.73.r $2$ (not in LMFDB) 1.73.h $3$ (not in LMFDB) 1.73.k $3$ (not in LMFDB) 1.73.ak $6$ (not in LMFDB) 1.73.ah $6$ (not in LMFDB)