| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.73.ar |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$57$ |
$[57, 5187, 387828, 28388451, 2072992017, 151333588224, 11047393481097, 806460052826883, 58871586411899604, 4297625827517201907]$ |
$57$ |
$[57, 5187, 387828, 28388451, 2072992017, 151333588224, 11047393481097, 806460052826883, 58871586411899604, 4297625827517201907]$ |
$1$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.73.aq |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$58$ |
$[58, 5220, 388426, 28396800, 2073091738, 151334653860, 11047403889706, 806460146611200, 58871587191687418, 4297625833443920100]$ |
$58$ |
$[58, 5220, 388426, 28396800, 2073091738, 151334653860, 11047403889706, 806460146611200, 58871587191687418, 4297625833443920100]$ |
$3$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.73.ap |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$59$ |
$[59, 5251, 388928, 28402659, 2073144419, 151334996224, 11047404751883, 806460129180675, 58871586812573504, 4297625828546220211]$ |
$59$ |
$[59, 5251, 388928, 28402659, 2073144419, 151334996224, 11047404751883, 806460129180675, 58871586812573504, 4297625828546220211]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.73.ao |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$60$ |
$[60, 5280, 389340, 28406400, 2073162300, 151334900640, 11047401338460, 806460082137600, 58871586365863740, 4297625825622122400]$ |
$60$ |
$[60, 5280, 389340, 28406400, 2073162300, 151334900640, 11047401338460, 806460082137600, 58871586365863740, 4297625825622122400]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
| 1.73.an |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$61$ |
$[61, 5307, 389668, 28408371, 2073155821, 151334581824, 11047396992469, 806460046093923, 58871586224309764, 4297625826755513307]$ |
$61$ |
$[61, 5307, 389668, 28408371, 2073155821, 151334581824, 11047396992469, 806460046093923, 58871586224309764, 4297625826755513307]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |
| 1.73.am |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$62$ |
$[62, 5332, 389918, 28408896, 2073133742, 151334194324, 11047393598702, 806460035182848, 58871586386922014, 4297625829987326932]$ |
$62$ |
$[62, 5332, 389918, 28408896, 2073133742, 151334194324, 11047393598702, 806460035182848, 58871586386922014, 4297625829987326932]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-37}) \) |
$C_2$ |
simple |
| 1.73.al |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$63$ |
$[63, 5355, 390096, 28408275, 2073103263, 151333842240, 11047391982711, 806460048029475, 58871586702913488, 4297625832846775275]$ |
$63$ |
$[63, 5355, 390096, 28408275, 2073103263, 151333842240, 11047391982711, 806460048029475, 58871586702913488, 4297625832846775275]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.73.ak |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$64$ |
$[64, 5376, 390208, 28406784, 2073070144, 151333588224, 11047392244288, 806460075724800, 58871587004636224, 4297625833847598336]$ |
$64$ |
$[64, 5376, 390208, 28406784, 2073070144, 151333588224, 11047392244288, 806460075724800, 58871587004636224, 4297625833847598336]$ |
$8$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.73.aj |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$65$ |
$[65, 5395, 390260, 28404675, 2073038825, 151333461760, 11047394030465, 806460107307075, 58871587174655060, 4297625832775893475]$ |
$65$ |
$[65, 5395, 390260, 28404675, 2073038825, 151333461760, 11047394030465, 806460107307075, 58871587174655060, 4297625832775893475]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-211}) \) |
$C_2$ |
simple |
| 1.73.ai |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$66$ |
$[66, 5412, 390258, 28402176, 2073012546, 151333466724, 11047396753074, 806460133214208, 58871587167748674, 4297625830363034532]$ |
$66$ |
$[66, 5412, 390258, 28402176, 2073012546, 151333466724, 11047396753074, 806460133214208, 58871587167748674, 4297625830363034532]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-57}) \) |
$C_2$ |
simple |
| 1.73.ah |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$67$ |
$[67, 5427, 390208, 28399491, 2072993467, 151333588224, 11047399755907, 806460147130563, 58871587004636224, 4297625827745872707]$ |
$67$ |
$[67, 5427, 390208, 28399491, 2072993467, 151333588224, 11047399755907, 806460147130563, 58871587004636224, 4297625827745872707]$ |
$5$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.73.ag |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$68$ |
$[68, 5440, 390116, 28396800, 2072982788, 151333798720, 11047402436516, 806460146611200, 58871586750599108, 4297625825963195200]$ |
$68$ |
$[68, 5440, 390116, 28396800, 2072982788, 151333798720, 11047402436516, 806460146611200, 58871586750599108, 4297625825963195200]$ |
$8$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.73.af |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$69$ |
$[69, 5451, 389988, 28394259, 2072980869, 151334063424, 11047404327693, 806460132826275, 58871586488901444, 4297625825618675211]$ |
$69$ |
$[69, 5451, 389988, 28394259, 2072980869, 151334063424, 11047404327693, 806460132826275, 58871586488901444, 4297625825618675211]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-267}) \) |
$C_2$ |
simple |
| 1.73.ae |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$70$ |
$[70, 5460, 389830, 28392000, 2072987350, 151334344980, 11047405143670, 806460109728000, 58871586296009830, 4297625826752649300]$ |
$70$ |
$[70, 5460, 389830, 28392000, 2072987350, 151334344980, 11047405143670, 806460109728000, 58871586296009830, 4297625826752649300]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-69}) \) |
$C_2$ |
simple |
| 1.73.ad |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$71$ |
$[71, 5467, 389648, 28390131, 2073001271, 151334607424, 11047404796079, 806460082902243, 58871586223072784, 4297625828904376507]$ |
$71$ |
$[71, 5467, 389648, 28390131, 2073001271, 151334607424, 11047404796079, 806460082902243, 58871586223072784, 4297625828904376507]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-283}) \) |
$C_2$ |
simple |
| 1.73.ac |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$72$ |
$[72, 5472, 389448, 28388736, 2073021192, 151334819424, 11047403384712, 806460058326528, 58871586285942984, 4297625831309339232]$ |
$72$ |
$[72, 5472, 389448, 28388736, 2073021192, 151334819424, 11047403384712, 806460058326528, 58871586285942984, 4297625831309339232]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.73.ab |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$73$ |
$[73, 5475, 389236, 28387875, 2073045313, 151334956800, 11047401168121, 806460041215875, 58871586464211028, 4297625833159009875]$ |
$73$ |
$[73, 5475, 389236, 28387875, 2073045313, 151334956800, 11047401168121, 806460041215875, 58871586464211028, 4297625833159009875]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-291}) \) |
$C_2$ |
simple |
| 1.73.a |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 73 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$74$ |
$[74, 5476, 389018, 28387584, 2073071594, 151335004324, 11047398519098, 806460035097600, 58871586708267914, 4297625833849700836]$ |
$74$ |
$[74, 5476, 389018, 28387584, 2073071594, 151335004324, 11047398519098, 806460035097600, 58871586708267914, 4297625833849700836]$ |
$4$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-73}) \) |
$C_2$ |
simple |
| 1.73.b |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$75$ |
$[75, 5475, 388800, 28387875, 2073097875, 151334956800, 11047395870075, 806460041215875, 58871586952324800, 4297625833159009875]$ |
$75$ |
$[75, 5475, 388800, 28387875, 2073097875, 151334956800, 11047395870075, 806460041215875, 58871586952324800, 4297625833159009875]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-291}) \) |
$C_2$ |
simple |
| 1.73.c |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$76$ |
$[76, 5472, 388588, 28388736, 2073121996, 151334819424, 11047393653484, 806460058326528, 58871587130592844, 4297625831309339232]$ |
$76$ |
$[76, 5472, 388588, 28388736, 2073121996, 151334819424, 11047393653484, 806460058326528, 58871587130592844, 4297625831309339232]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.73.d |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$77$ |
$[77, 5467, 388388, 28390131, 2073141917, 151334607424, 11047392242117, 806460082902243, 58871587193463044, 4297625828904376507]$ |
$77$ |
$[77, 5467, 388388, 28390131, 2073141917, 151334607424, 11047392242117, 806460082902243, 58871587193463044, 4297625828904376507]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-283}) \) |
$C_2$ |
simple |
| 1.73.e |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$78$ |
$[78, 5460, 388206, 28392000, 2073155838, 151334344980, 11047391894526, 806460109728000, 58871587120525998, 4297625826752649300]$ |
$78$ |
$[78, 5460, 388206, 28392000, 2073155838, 151334344980, 11047391894526, 806460109728000, 58871587120525998, 4297625826752649300]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-69}) \) |
$C_2$ |
simple |
| 1.73.f |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$79$ |
$[79, 5451, 388048, 28394259, 2073162319, 151334063424, 11047392710503, 806460132826275, 58871586927634384, 4297625825618675211]$ |
$79$ |
$[79, 5451, 388048, 28394259, 2073162319, 151334063424, 11047392710503, 806460132826275, 58871586927634384, 4297625825618675211]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-267}) \) |
$C_2$ |
simple |
| 1.73.g |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$80$ |
$[80, 5440, 387920, 28396800, 2073160400, 151333798720, 11047394601680, 806460146611200, 58871586665936720, 4297625825963195200]$ |
$80$ |
$[80, 5440, 387920, 28396800, 2073160400, 151333798720, 11047394601680, 806460146611200, 58871586665936720, 4297625825963195200]$ |
$8$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.73.h |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$81$ |
$[81, 5427, 387828, 28399491, 2073149721, 151333588224, 11047397282289, 806460147130563, 58871586411899604, 4297625827745872707]$ |
$81$ |
$[81, 5427, 387828, 28399491, 2073149721, 151333588224, 11047397282289, 806460147130563, 58871586411899604, 4297625827745872707]$ |
$5$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.73.i |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$82$ |
$[82, 5412, 387778, 28402176, 2073130642, 151333466724, 11047400285122, 806460133214208, 58871586248787154, 4297625830363034532]$ |
$82$ |
$[82, 5412, 387778, 28402176, 2073130642, 151333466724, 11047400285122, 806460133214208, 58871586248787154, 4297625830363034532]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-57}) \) |
$C_2$ |
simple |
| 1.73.j |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$83$ |
$[83, 5395, 387776, 28404675, 2073104363, 151333461760, 11047403007731, 806460107307075, 58871586241880768, 4297625832775893475]$ |
$83$ |
$[83, 5395, 387776, 28404675, 2073104363, 151333461760, 11047403007731, 806460107307075, 58871586241880768, 4297625832775893475]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-211}) \) |
$C_2$ |
simple |
| 1.73.k |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$84$ |
$[84, 5376, 387828, 28406784, 2073073044, 151333588224, 11047404793908, 806460075724800, 58871586411899604, 4297625833847598336]$ |
$84$ |
$[84, 5376, 387828, 28406784, 2073073044, 151333588224, 11047404793908, 806460075724800, 58871586411899604, 4297625833847598336]$ |
$8$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.73.l |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$85$ |
$[85, 5355, 387940, 28408275, 2073039925, 151333842240, 11047405055485, 806460048029475, 58871586713622340, 4297625832846775275]$ |
$85$ |
$[85, 5355, 387940, 28408275, 2073039925, 151333842240, 11047405055485, 806460048029475, 58871586713622340, 4297625832846775275]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.73.m |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$86$ |
$[86, 5332, 388118, 28408896, 2073009446, 151334194324, 11047403439494, 806460035182848, 58871587029613814, 4297625829987326932]$ |
$86$ |
$[86, 5332, 388118, 28408896, 2073009446, 151334194324, 11047403439494, 806460035182848, 58871587029613814, 4297625829987326932]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-37}) \) |
$C_2$ |
simple |
| 1.73.n |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$87$ |
$[87, 5307, 388368, 28408371, 2072987367, 151334581824, 11047400045727, 806460046093923, 58871587192226064, 4297625826755513307]$ |
$87$ |
$[87, 5307, 388368, 28408371, 2072987367, 151334581824, 11047400045727, 806460046093923, 58871587192226064, 4297625826755513307]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |
| 1.73.o |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$88$ |
$[88, 5280, 388696, 28406400, 2072980888, 151334900640, 11047395699736, 806460082137600, 58871587050672088, 4297625825622122400]$ |
$88$ |
$[88, 5280, 388696, 28406400, 2072980888, 151334900640, 11047395699736, 806460082137600, 58871587050672088, 4297625825622122400]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
| 1.73.p |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$89$ |
$[89, 5251, 389108, 28402659, 2072998769, 151334996224, 11047392286313, 806460129180675, 58871586603962324, 4297625828546220211]$ |
$89$ |
$[89, 5251, 389108, 28402659, 2072998769, 151334996224, 11047392286313, 806460129180675, 58871586603962324, 4297625828546220211]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.73.q |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 16 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$90$ |
$[90, 5220, 389610, 28396800, 2073051450, 151334653860, 11047393148490, 806460146611200, 58871586224848410, 4297625833443920100]$ |
$90$ |
$[90, 5220, 389610, 28396800, 2073051450, 151334653860, 11047393148490, 806460146611200, 58871586224848410, 4297625833443920100]$ |
$3$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.73.r |
$1$ |
$\F_{73}$ |
$73$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 17 x + 73 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$91$ |
$[91, 5187, 390208, 28388451, 2073151171, 151333588224, 11047403557099, 806460052826883, 58871587004636224, 4297625827517201907]$ |
$91$ |
$[91, 5187, 390208, 28388451, 2073151171, 151333588224, 11047403557099, 806460052826883, 58871587004636224, 4297625827517201907]$ |
$1$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |