| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.71.aq |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$56$ |
$[56, 4928, 357224, 25408768, 1804231576, 128100526400, 9095123880136, 645753573577728, 45848501131516664, 3255243554613393728]$ |
$56$ |
$[56, 4928, 357224, 25408768, 1804231576, 128100526400, 9095123880136, 645753573577728, 45848501131516664, 3255243554613393728]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.71.ap |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$57$ |
$[57, 4959, 357732, 25414875, 1804290027, 128100967344, 9095126101797, 645753571873875, 45848500905888972, 3255243550936884279]$ |
$57$ |
$[57, 4959, 357732, 25414875, 1804290027, 128100967344, 9095126101797, 645753571873875, 45848500905888972, 3255243550936884279]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-59}) \) |
$C_2$ |
simple |
| 1.71.ao |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$58$ |
$[58, 4988, 358150, 25418848, 1804312778, 128100943100, 9095123463638, 645753530717568, 45848500476381850, 3255243547658442428]$ |
$58$ |
$[58, 4988, 358150, 25418848, 1804312778, 128100943100, 9095123463638, 645753530717568, 45848500476381850, 3255243547658442428]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \) |
$C_2$ |
simple |
| 1.71.an |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$59$ |
$[59, 5015, 358484, 25421035, 1804310329, 128100672560, 9095119461319, 645753494590515, 45848500291423004, 3255243548061065375]$ |
$59$ |
$[59, 5015, 358484, 25421035, 1804310329, 128100672560, 9095119461319, 645753494590515, 45848500291423004, 3255243548061065375]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-115}) \) |
$C_2$ |
simple |
| 1.71.am |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$60$ |
$[60, 5040, 358740, 25421760, 1804291500, 128100314160, 9095116108740, 645753480503040, 45848500397061660, 3255243550755966000]$ |
$60$ |
$[60, 5040, 358740, 25421760, 1804291500, 128100314160, 9095116108740, 645753480503040, 45848500397061660, 3255243550755966000]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \) |
$C_2$ |
simple |
| 1.71.al |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$61$ |
$[61, 5063, 358924, 25421323, 1804263551, 128099975600, 9095114338721, 645753489120243, 45848500668264964, 3255243553448768303]$ |
$61$ |
$[61, 5063, 358924, 25421323, 1804263551, 128099975600, 9095114338721, 645753489120243, 45848500668264964, 3255243553448768303]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.71.ak |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$62$ |
$[62, 5084, 359042, 25420000, 1804232302, 128099722844, 9095114338162, 645753512880000, 45848500948027742, 3255243554609637404]$ |
$62$ |
$[62, 5084, 359042, 25420000, 1804232302, 128099722844, 9095114338162, 645753512880000, 45848500948027742, 3255243554609637404]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-46}) \) |
$C_2$ |
simple |
| 1.71.aj |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$63$ |
$[63, 5103, 359100, 25418043, 1804202253, 128099588400, 9095115822723, 645753541606803, 45848501119530900, 3255243553883984103]$ |
$63$ |
$[63, 5103, 359100, 25418043, 1804202253, 128099588400, 9095115822723, 645753541606803, 45848501119530900, 3255243553883984103]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-203}) \) |
$C_2$ |
simple |
| 1.71.ai |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$64$ |
$[64, 5120, 359104, 25415680, 1804176704, 128099578880, 9095118256064, 645753566085120, 45848501132229184, 3255243551846528000]$ |
$64$ |
$[64, 5120, 359104, 25415680, 1804176704, 128099578880, 9095118256064, 645753566085120, 45848501132229184, 3255243551846528000]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-55}) \) |
$C_2$ |
simple |
| 1.71.ah |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$65$ |
$[65, 5135, 359060, 25413115, 1804157875, 128099681840, 9095121018685, 645753580015635, 45848500998757340, 3255243549509378375]$ |
$65$ |
$[65, 5135, 359060, 25413115, 1804157875, 128099681840, 9095121018685, 645753580015635, 45848500998757340, 3255243549509378375]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-235}) \) |
$C_2$ |
simple |
| 1.71.ag |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$66$ |
$[66, 5148, 358974, 25410528, 1804147026, 128099871900, 9095123531406, 645753580737408, 45848500775914914, 3255243547840769628]$ |
$66$ |
$[66, 5148, 358974, 25410528, 1804147026, 128099871900, 9095123531406, 645753580737408, 45848500775914914, 3255243547840769628]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-62}) \) |
$C_2$ |
simple |
| 1.71.af |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$67$ |
$[67, 5159, 358852, 25408075, 1804144577, 128100116144, 9095125338527, 645753569058675, 45848500539724012, 3255243547431539279]$ |
$67$ |
$[67, 5159, 358852, 25408075, 1804144577, 128100116144, 9095125338527, 645753569058675, 45848500539724012, 3255243547431539279]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-259}) \) |
$C_2$ |
simple |
| 1.71.ae |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$68$ |
$[68, 5168, 358700, 25405888, 1804150228, 128100378800, 9095126155708, 645753548498688, 45848500361651300, 3255243548357732528]$ |
$68$ |
$[68, 5168, 358700, 25405888, 1804150228, 128100378800, 9095126155708, 645753548498688, 45848500361651300, 3255243548357732528]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.71.ad |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$69$ |
$[69, 5175, 358524, 25404075, 1804163079, 128100625200, 9095125887609, 645753524202675, 45848500290545364, 3255243550226229375]$ |
$69$ |
$[69, 5175, 358524, 25404075, 1804163079, 128100625200, 9095125887609, 645753524202675, 45848500290545364, 3255243550226229375]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
| 1.71.ac |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$70$ |
$[70, 5180, 358330, 25402720, 1804181750, 128100825020, 9095124620330, 645753501751680, 45848500342663270, 3255243552352389500]$ |
$70$ |
$[70, 5180, 358330, 25402720, 1804181750, 128100825020, 9095124620330, 645753501751680, 45848500342663270, 3255243552352389500]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-70}) \) |
$C_2$ |
simple |
| 1.71.ab |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$71$ |
$[71, 5183, 358124, 25401883, 1804204501, 128100954800, 9095122593691, 645753486048723, 45848500500345764, 3255243554000767703]$ |
$71$ |
$[71, 5183, 358124, 25401883, 1804204501, 128100954800, 9095122593691, 645753486048723, 45848500500345764, 3255243554000767703]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-283}) \) |
$C_2$ |
simple |
| 1.71.a |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 71 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$72$ |
$[72, 5184, 357912, 25401600, 1804229352, 128100999744, 9095120158392, 645753480422400, 45848500718449032, 3255243554618339904]$ |
$72$ |
$[72, 5184, 357912, 25401600, 1804229352, 128100999744, 9095120158392, 645753480422400, 45848500718449032, 3255243554618339904]$ |
$14$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-71}) \) |
$C_2$ |
simple |
| 1.71.b |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$73$ |
$[73, 5183, 357700, 25401883, 1804254203, 128100954800, 9095117723093, 645753486048723, 45848500936552300, 3255243554000767703]$ |
$73$ |
$[73, 5183, 357700, 25401883, 1804254203, 128100954800, 9095117723093, 645753486048723, 45848500936552300, 3255243554000767703]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-283}) \) |
$C_2$ |
simple |
| 1.71.c |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$74$ |
$[74, 5180, 357494, 25402720, 1804276954, 128100825020, 9095115696454, 645753501751680, 45848501094234794, 3255243552352389500]$ |
$74$ |
$[74, 5180, 357494, 25402720, 1804276954, 128100825020, 9095115696454, 645753501751680, 45848501094234794, 3255243552352389500]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-70}) \) |
$C_2$ |
simple |
| 1.71.d |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$75$ |
$[75, 5175, 357300, 25404075, 1804295625, 128100625200, 9095114429175, 645753524202675, 45848501146352700, 3255243550226229375]$ |
$75$ |
$[75, 5175, 357300, 25404075, 1804295625, 128100625200, 9095114429175, 645753524202675, 45848501146352700, 3255243550226229375]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
| 1.71.e |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$76$ |
$[76, 5168, 357124, 25405888, 1804308476, 128100378800, 9095114161076, 645753548498688, 45848501075246764, 3255243548357732528]$ |
$76$ |
$[76, 5168, 357124, 25405888, 1804308476, 128100378800, 9095114161076, 645753548498688, 45848501075246764, 3255243548357732528]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.71.f |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$77$ |
$[77, 5159, 356972, 25408075, 1804314127, 128100116144, 9095114978257, 645753569058675, 45848500897174052, 3255243547431539279]$ |
$77$ |
$[77, 5159, 356972, 25408075, 1804314127, 128100116144, 9095114978257, 645753569058675, 45848500897174052, 3255243547431539279]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-259}) \) |
$C_2$ |
simple |
| 1.71.g |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$78$ |
$[78, 5148, 356850, 25410528, 1804311678, 128099871900, 9095116785378, 645753580737408, 45848500660983150, 3255243547840769628]$ |
$78$ |
$[78, 5148, 356850, 25410528, 1804311678, 128099871900, 9095116785378, 645753580737408, 45848500660983150, 3255243547840769628]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-62}) \) |
$C_2$ |
simple |
| 1.71.h |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$79$ |
$[79, 5135, 356764, 25413115, 1804300829, 128099681840, 9095119298099, 645753580015635, 45848500438140724, 3255243549509378375]$ |
$79$ |
$[79, 5135, 356764, 25413115, 1804300829, 128099681840, 9095119298099, 645753580015635, 45848500438140724, 3255243549509378375]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-235}) \) |
$C_2$ |
simple |
| 1.71.i |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$80$ |
$[80, 5120, 356720, 25415680, 1804282000, 128099578880, 9095122060720, 645753566085120, 45848500304668880, 3255243551846528000]$ |
$80$ |
$[80, 5120, 356720, 25415680, 1804282000, 128099578880, 9095122060720, 645753566085120, 45848500304668880, 3255243551846528000]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-55}) \) |
$C_2$ |
simple |
| 1.71.j |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$81$ |
$[81, 5103, 356724, 25418043, 1804256451, 128099588400, 9095124494061, 645753541606803, 45848500317367164, 3255243553883984103]$ |
$81$ |
$[81, 5103, 356724, 25418043, 1804256451, 128099588400, 9095124494061, 645753541606803, 45848500317367164, 3255243553883984103]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-203}) \) |
$C_2$ |
simple |
| 1.71.k |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$82$ |
$[82, 5084, 356782, 25420000, 1804226402, 128099722844, 9095125978622, 645753512880000, 45848500488870322, 3255243554609637404]$ |
$82$ |
$[82, 5084, 356782, 25420000, 1804226402, 128099722844, 9095125978622, 645753512880000, 45848500488870322, 3255243554609637404]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-46}) \) |
$C_2$ |
simple |
| 1.71.l |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$83$ |
$[83, 5063, 356900, 25421323, 1804195153, 128099975600, 9095125978063, 645753489120243, 45848500768633100, 3255243553448768303]$ |
$83$ |
$[83, 5063, 356900, 25421323, 1804195153, 128099975600, 9095125978063, 645753489120243, 45848500768633100, 3255243553448768303]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.71.m |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$84$ |
$[84, 5040, 357084, 25421760, 1804167204, 128100314160, 9095124208044, 645753480503040, 45848501039836404, 3255243550755966000]$ |
$84$ |
$[84, 5040, 357084, 25421760, 1804167204, 128100314160, 9095124208044, 645753480503040, 45848501039836404, 3255243550755966000]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \) |
$C_2$ |
simple |
| 1.71.n |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$85$ |
$[85, 5015, 357340, 25421035, 1804148375, 128100672560, 9095120855465, 645753494590515, 45848501145475060, 3255243548061065375]$ |
$85$ |
$[85, 5015, 357340, 25421035, 1804148375, 128100672560, 9095120855465, 645753494590515, 45848501145475060, 3255243548061065375]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-115}) \) |
$C_2$ |
simple |
| 1.71.o |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$86$ |
$[86, 4988, 357674, 25418848, 1804145926, 128100943100, 9095116853146, 645753530717568, 45848500960516214, 3255243547658442428]$ |
$86$ |
$[86, 4988, 357674, 25418848, 1804145926, 128100943100, 9095116853146, 645753530717568, 45848500960516214, 3255243547658442428]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \) |
$C_2$ |
simple |
| 1.71.p |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$87$ |
$[87, 4959, 358092, 25414875, 1804168677, 128100967344, 9095114214987, 645753571873875, 45848500531009092, 3255243550936884279]$ |
$87$ |
$[87, 4959, 358092, 25414875, 1804168677, 128100967344, 9095114214987, 645753571873875, 45848500531009092, 3255243550936884279]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-59}) \) |
$C_2$ |
simple |
| 1.71.q |
$1$ |
$\F_{71}$ |
$71$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 16 x + 71 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$88$ |
$[88, 4928, 358600, 25408768, 1804227128, 128100526400, 9095116436648, 645753573577728, 45848500305381400, 3255243554613393728]$ |
$88$ |
$[88, 4928, 358600, 25408768, 1804227128, 128100526400, 9095116436648, 645753573577728, 45848500305381400, 3255243554613393728]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |