Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
1.67.aq |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$52$ |
$[52, 4368, 299884, 20145216, 1350089572, 90458209296, 6060711220252, 406067682978048, 27206534508837268, 1822837805989204368]$ |
$52$ |
$[52, 4368, 299884, 20145216, 1350089572, 90458209296, 6060711220252, 406067682978048, 27206534508837268, 1822837805989204368]$ |
$2$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.67.ap |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$53$ |
$[53, 4399, 300404, 20151819, 1350159683, 90458854096, 6060716367689, 406067717373075, 27206534674462988, 1822837806056581039]$ |
$53$ |
$[53, 4399, 300404, 20151819, 1350159683, 90458854096, 6060716367689, 406067717373075, 27206534674462988, 1822837806056581039]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
1.67.ao |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$54$ |
$[54, 4428, 300834, 20156256, 1350192294, 90458978796, 6060715456626, 406067691500928, 27206534333477718, 1822837802738053068]$ |
$54$ |
$[54, 4428, 300834, 20156256, 1350192294, 90458978796, 6060715456626, 406067691500928, 27206534333477718, 1822837802738053068]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
1.67.an |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$55$ |
$[55, 4455, 301180, 20158875, 1350198025, 90458810640, 6060712289995, 406067657749875, 27206534092934020, 1822837801935122775]$ |
$55$ |
$[55, 4455, 301180, 20158875, 1350198025, 90458810640, 6060712289995, 406067657749875, 27206534092934020, 1822837801935122775]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
1.67.am |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$56$ |
$[56, 4480, 301448, 20160000, 1350185816, 90458515840, 6060709141928, 406067639040000, 27206534099142776, 1822837803566550400]$ |
$56$ |
$[56, 4480, 301448, 20160000, 1350185816, 90458515840, 6060709141928, 406067639040000, 27206534099142776, 1822837803566550400]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-31}) \) |
$C_2$ |
simple |
1.67.al |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$57$ |
$[57, 4503, 301644, 20159931, 1350163047, 90458209296, 6060707161797, 406067640260403, 27206534283752628, 1822837805812643943]$ |
$57$ |
$[57, 4503, 301644, 20159931, 1350163047, 90458209296, 6060707161797, 406067640260403, 27206534283752628, 1822837805812643943]$ |
$3$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.67.ak |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$58$ |
$[58, 4524, 301774, 20158944, 1350135658, 90457963596, 6060706712734, 406067656675200, 27206534515284058, 1822837807140709164]$ |
$58$ |
$[58, 4524, 301774, 20158944, 1350135658, 90457963596, 6060706712734, 406067656675200, 27206534515284058, 1822837807140709164]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-42}) \) |
$C_2$ |
simple |
1.67.aj |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$59$ |
$[59, 4543, 301844, 20157291, 1350108269, 90457817296, 6060707649671, 406067679802323, 27206534681534828, 1822837806968459743]$ |
$59$ |
$[59, 4543, 301844, 20157291, 1350108269, 90457817296, 6060707649671, 406067679802323, 27206534681534828, 1822837806968459743]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-187}) \) |
$C_2$ |
simple |
1.67.ai |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$60$ |
$[60, 4560, 301860, 20155200, 1350084300, 90457782480, 6060709541940, 406067701228800, 27206534723918940, 1822837805586718800]$ |
$60$ |
$[60, 4560, 301860, 20155200, 1350084300, 90457782480, 6060709541940, 406067701228800, 27206534723918940, 1822837805586718800]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
1.67.ah |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$61$ |
$[61, 4575, 301828, 20152875, 1350066091, 90457851600, 6060711845473, 406067714785875, 27206534640809596, 1822837803769005375]$ |
$61$ |
$[61, 4575, 301828, 20152875, 1350066091, 90457851600, 6060711845473, 406067714785875, 27206534640809596, 1822837803769005375]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-219}) \) |
$C_2$ |
simple |
1.67.ag |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$62$ |
$[62, 4588, 301754, 20150496, 1350055022, 90458003596, 6060714029642, 406067717467008, 27206534473327838, 1822837802339964268]$ |
$62$ |
$[62, 4588, 301754, 20150496, 1350055022, 90458003596, 6060714029642, 406067717467008, 27206534473327838, 1822837802339964268]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-58}) \) |
$C_2$ |
simple |
1.67.af |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$63$ |
$[63, 4599, 301644, 20148219, 1350051633, 90458209296, 6060715663779, 406067709431475, 27206534283752628, 1822837801853436039]$ |
$63$ |
$[63, 4599, 301644, 20148219, 1350051633, 90458209296, 6060715663779, 406067709431475, 27206534283752628, 1822837801853436039]$ |
$5$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.67.ae |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$64$ |
$[64, 4608, 301504, 20146176, 1350055744, 90458436096, 6060716468416, 406067693395968, 27206534133825088, 1822837802440647168]$ |
$64$ |
$[64, 4608, 301504, 20146176, 1350055744, 90458436096, 6060716468416, 406067693395968, 27206534133825088, 1822837802440647168]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.67.ad |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$65$ |
$[65, 4615, 301340, 20144475, 1350066575, 90458651920, 6060716336285, 406067673676275, 27206534067679460, 1822837803825899575]$ |
$65$ |
$[65, 4615, 301340, 20144475, 1350066575, 90458651920, 6060716336285, 406067673676275, 27206534067679460, 1822837803825899575]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-259}) \) |
$C_2$ |
simple |
1.67.ac |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$66$ |
$[66, 4620, 301158, 20143200, 1350082866, 90458828460, 6060715328118, 406067655100800, 27206534101956066, 1822837805467625100]$ |
$66$ |
$[66, 4620, 301158, 20143200, 1350082866, 90458828460, 6060715328118, 406067655100800, 27206534101956066, 1822837805467625100]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-66}) \) |
$C_2$ |
simple |
1.67.ab |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$67$ |
$[67, 4623, 300964, 20142411, 1350102997, 90458943696, 6060713648287, 406067641977363, 27206534223837148, 1822837806763115343]$ |
$67$ |
$[67, 4623, 300964, 20142411, 1350102997, 90458943696, 6060713648287, 406067641977363, 27206534223837148, 1822837806763115343]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-267}) \) |
$C_2$ |
simple |
1.67.a |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 67 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$68$ |
$[68, 4624, 300764, 20142144, 1350125108, 90458983696, 6060711605324, 406067637254400, 27206534396294948, 1822837807252011664]$ |
$68$ |
$[68, 4624, 300764, 20142144, 1350125108, 90458983696, 6060711605324, 406067637254400, 27206534396294948, 1822837807252011664]$ |
$4$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
1.67.b |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$69$ |
$[69, 4623, 300564, 20142411, 1350147219, 90458943696, 6060709562361, 406067641977363, 27206534568752748, 1822837806763115343]$ |
$69$ |
$[69, 4623, 300564, 20142411, 1350147219, 90458943696, 6060709562361, 406067641977363, 27206534568752748, 1822837806763115343]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-267}) \) |
$C_2$ |
simple |
1.67.c |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$70$ |
$[70, 4620, 300370, 20143200, 1350167350, 90458828460, 6060707882530, 406067655100800, 27206534690633830, 1822837805467625100]$ |
$70$ |
$[70, 4620, 300370, 20143200, 1350167350, 90458828460, 6060707882530, 406067655100800, 27206534690633830, 1822837805467625100]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-66}) \) |
$C_2$ |
simple |
1.67.d |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$71$ |
$[71, 4615, 300188, 20144475, 1350183641, 90458651920, 6060706874363, 406067673676275, 27206534724910436, 1822837803825899575]$ |
$71$ |
$[71, 4615, 300188, 20144475, 1350183641, 90458651920, 6060706874363, 406067673676275, 27206534724910436, 1822837803825899575]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-259}) \) |
$C_2$ |
simple |
1.67.e |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$72$ |
$[72, 4608, 300024, 20146176, 1350194472, 90458436096, 6060706742232, 406067693395968, 27206534658764808, 1822837802440647168]$ |
$72$ |
$[72, 4608, 300024, 20146176, 1350194472, 90458436096, 6060706742232, 406067693395968, 27206534658764808, 1822837802440647168]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
1.67.f |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$73$ |
$[73, 4599, 299884, 20148219, 1350198583, 90458209296, 6060707546869, 406067709431475, 27206534508837268, 1822837801853436039]$ |
$73$ |
$[73, 4599, 299884, 20148219, 1350198583, 90458209296, 6060707546869, 406067709431475, 27206534508837268, 1822837801853436039]$ |
$5$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.67.g |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$74$ |
$[74, 4588, 299774, 20150496, 1350195194, 90458003596, 6060709181006, 406067717467008, 27206534319262058, 1822837802339964268]$ |
$74$ |
$[74, 4588, 299774, 20150496, 1350195194, 90458003596, 6060709181006, 406067717467008, 27206534319262058, 1822837802339964268]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-58}) \) |
$C_2$ |
simple |
1.67.h |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$75$ |
$[75, 4575, 299700, 20152875, 1350184125, 90457851600, 6060711365175, 406067714785875, 27206534151780300, 1822837803769005375]$ |
$75$ |
$[75, 4575, 299700, 20152875, 1350184125, 90457851600, 6060711365175, 406067714785875, 27206534151780300, 1822837803769005375]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-219}) \) |
$C_2$ |
simple |
1.67.i |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$76$ |
$[76, 4560, 299668, 20155200, 1350165916, 90457782480, 6060713668708, 406067701228800, 27206534068670956, 1822837805586718800]$ |
$76$ |
$[76, 4560, 299668, 20155200, 1350165916, 90457782480, 6060713668708, 406067701228800, 27206534068670956, 1822837805586718800]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
1.67.j |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$77$ |
$[77, 4543, 299684, 20157291, 1350141947, 90457817296, 6060715560977, 406067679802323, 27206534111055068, 1822837806968459743]$ |
$77$ |
$[77, 4543, 299684, 20157291, 1350141947, 90457817296, 6060715560977, 406067679802323, 27206534111055068, 1822837806968459743]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-187}) \) |
$C_2$ |
simple |
1.67.k |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$78$ |
$[78, 4524, 299754, 20158944, 1350114558, 90457963596, 6060716497914, 406067656675200, 27206534277305838, 1822837807140709164]$ |
$78$ |
$[78, 4524, 299754, 20158944, 1350114558, 90457963596, 6060716497914, 406067656675200, 27206534277305838, 1822837807140709164]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-42}) \) |
$C_2$ |
simple |
1.67.l |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$79$ |
$[79, 4503, 299884, 20159931, 1350087169, 90458209296, 6060716048851, 406067640260403, 27206534508837268, 1822837805812643943]$ |
$79$ |
$[79, 4503, 299884, 20159931, 1350087169, 90458209296, 6060716048851, 406067640260403, 27206534508837268, 1822837805812643943]$ |
$3$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
1.67.m |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$80$ |
$[80, 4480, 300080, 20160000, 1350064400, 90458515840, 6060714068720, 406067639040000, 27206534693447120, 1822837803566550400]$ |
$80$ |
$[80, 4480, 300080, 20160000, 1350064400, 90458515840, 6060714068720, 406067639040000, 27206534693447120, 1822837803566550400]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-31}) \) |
$C_2$ |
simple |
1.67.n |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$81$ |
$[81, 4455, 300348, 20158875, 1350052191, 90458810640, 6060710920653, 406067657749875, 27206534699655876, 1822837801935122775]$ |
$81$ |
$[81, 4455, 300348, 20158875, 1350052191, 90458810640, 6060710920653, 406067657749875, 27206534699655876, 1822837801935122775]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
1.67.o |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$82$ |
$[82, 4428, 300694, 20156256, 1350057922, 90458978796, 6060707754022, 406067691500928, 27206534459112178, 1822837802738053068]$ |
$82$ |
$[82, 4428, 300694, 20156256, 1350057922, 90458978796, 6060707754022, 406067691500928, 27206534459112178, 1822837802738053068]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
1.67.p |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$83$ |
$[83, 4399, 301124, 20151819, 1350090533, 90458854096, 6060706842959, 406067717373075, 27206534118126908, 1822837806056581039]$ |
$83$ |
$[83, 4399, 301124, 20151819, 1350090533, 90458854096, 6060706842959, 406067717373075, 27206534118126908, 1822837806056581039]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
1.67.q |
$1$ |
$\F_{67}$ |
$67$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 16 x + 67 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$84$ |
$[84, 4368, 301644, 20145216, 1350160644, 90458209296, 6060711990396, 406067682978048, 27206534283752628, 1822837805989204368]$ |
$84$ |
$[84, 4368, 301644, 20145216, 1350160644, 90458209296, 6060711990396, 406067682978048, 27206534283752628, 1822837805989204368]$ |
$2$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |