Properties

Label 1.64.ai
Base Field $\F_{2^{6}}$
Dimension $1$
Ordinary No
$p$-rank $0$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{2^{6}}$
Dimension:  $1$
L-polynomial:  $1 - 8 x + 64 x^{2}$
Frobenius angles:  $\pm0.333333333333$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\sqrt{-3}) \)
Galois group:  $C_2$
Jacobians:  2

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2]$

Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 57 4161 263169 16781313 1073709057 68718952449 4398044413953 281474993487873 18014398777917441 1152921505680588801

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 57 4161 263169 16781313 1073709057 68718952449 4398044413953 281474993487873 18014398777917441 1152921505680588801

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2^{6}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \).
Endomorphism algebra over $\overline{\F}_{2^{6}}$
The base change of $A$ to $\F_{2^{18}}$ is the simple isogeny class 1.262144.bnk and its endomorphism algebra is the quaternion algebra over \(\Q\) ramified at $2$ and $\infty$.
All geometric endomorphisms are defined over $\F_{2^{18}}$.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
1.64.i$2$(not in LMFDB)
1.64.q$3$(not in LMFDB)
1.64.aq$6$(not in LMFDB)
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.64.i$2$(not in LMFDB)
1.64.q$3$(not in LMFDB)
1.64.aq$6$(not in LMFDB)
1.64.a$12$(not in LMFDB)