Properties

Label 1.625.abu
Base Field $\F_{5^{4}}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{5^{4}}$
Dimension:  $1$
L-polynomial:  $1 - 46 x + 625 x^{2}$
Frobenius angles:  $\pm0.128188433698$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-6}) \)
Galois group:  $C_2$

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 580 389760 244129540 152587921920 95367440008900 59604645140772480 37252902996196534660 23283064365691159357440 14551915228373608972842820 9094947017729403086003932800

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 580 389760 244129540 152587921920 95367440008900 59604645140772480 37252902996196534660 23283064365691159357440 14551915228373608972842820 9094947017729403086003932800

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{5^{4}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-6}) \).
All geometric endomorphisms are defined over $\F_{5^{4}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.625.bu$2$(not in LMFDB)