| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.61.ap |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$47$ |
$[47, 3619, 226352, 13842675, 844587227, 51520431424, 3142744245527, 191707330659075, 11694146271781232, 713342913269719579]$ |
$47$ |
$[47, 3619, 226352, 13842675, 844587227, 51520431424, 3142744245527, 191707330659075, 11694146271781232, 713342913269719579]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.61.ao |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$48$ |
$[48, 3648, 226800, 13847808, 844634928, 51520795200, 3142746371568, 191707336823808, 11694146210737200, 713342911860107328]$ |
$48$ |
$[48, 3648, 226800, 13847808, 844634928, 51520795200, 3142746371568, 191707336823808, 11694146210737200, 713342911860107328]$ |
$4$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.61.an |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$49$ |
$[49, 3675, 227164, 13851075, 844653229, 51520795200, 3142744834369, 191707313304675, 11694145974931084, 713342910111391875]$ |
$49$ |
$[49, 3675, 227164, 13851075, 844653229, 51520795200, 3142744834369, 191707313304675, 11694145974931084, 713342910111391875]$ |
$3$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.61.am |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$50$ |
$[50, 3700, 227450, 13852800, 844651250, 51520609300, 3142742303450, 191707292275200, 11694145876656050, 713342910332792500]$ |
$50$ |
$[50, 3700, 227450, 13852800, 844651250, 51520609300, 3142742303450, 191707292275200, 11694145876656050, 713342910332792500]$ |
$3$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.61.al |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$51$ |
$[51, 3723, 227664, 13853283, 844636551, 51520363200, 3142740258051, 191707285320483, 11694145945645584, 713342911732093203]$ |
$51$ |
$[51, 3723, 227664, 13853283, 844636551, 51520363200, 3142740258051, 191707285320483, 11694145945645584, 713342911732093203]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |
| 1.61.ak |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$52$ |
$[52, 3744, 227812, 13852800, 844615252, 51520139424, 3142739330692, 191707292275200, 11694146099438452, 713342912992972704]$ |
$52$ |
$[52, 3744, 227812, 13852800, 844615252, 51520139424, 3142739330692, 191707292275200, 11694146099438452, 713342912992972704]$ |
$8$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.61.aj |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$53$ |
$[53, 3763, 227900, 13851603, 844592153, 51519985600, 3142739590253, 191707307499843, 11694146241349100, 713342913334861003]$ |
$53$ |
$[53, 3763, 227900, 13851603, 844592153, 51519985600, 3142739590253, 191707307499843, 11694146241349100, 713342913334861003]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.61.ai |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$54$ |
$[54, 3780, 227934, 13849920, 844570854, 51519922020, 3142740769614, 191707324058880, 11694146307377814, 713342912704474500]$ |
$54$ |
$[54, 3780, 227934, 13849920, 844570854, 51519922020, 3142740769614, 191707324058880, 11694146307377814, 713342912704474500]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-5}) \) |
$C_2$ |
simple |
| 1.61.ah |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$55$ |
$[55, 3795, 227920, 13847955, 844553875, 51519948480, 3142742442895, 191707336224195, 11694146279403280, 713342911552024875]$ |
$55$ |
$[55, 3795, 227920, 13847955, 844553875, 51519948480, 3142742442895, 191707336224195, 11694146279403280, 713342911552024875]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-195}) \) |
$C_2$ |
simple |
| 1.61.ag |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$56$ |
$[56, 3808, 227864, 13845888, 844542776, 51520050400, 3142744157336, 191707340686848, 11694146178371384, 713342910487042528]$ |
$56$ |
$[56, 3808, 227864, 13845888, 844542776, 51520050400, 3142744157336, 191707340686848, 11694146178371384, 713342910487042528]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |
| 1.61.af |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$57$ |
$[57, 3819, 227772, 13843875, 844538277, 51520204224, 3142745524857, 191707336819875, 11694146047928172, 713342909985174579]$ |
$57$ |
$[57, 3819, 227772, 13843875, 844538277, 51520204224, 3142745524857, 191707336819875, 11694146047928172, 713342909985174579]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-219}) \) |
$C_2$ |
simple |
| 1.61.ae |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$58$ |
$[58, 3828, 227650, 13842048, 844540378, 51520382100, 3142746278338, 191707326294528, 11694145936041850, 713342910224581428]$ |
$58$ |
$[58, 3828, 227650, 13842048, 844540378, 51520382100, 3142746278338, 191707326294528, 11694145936041850, 713342910224581428]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-57}) \) |
$C_2$ |
simple |
| 1.61.ad |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$59$ |
$[59, 3835, 227504, 13840515, 844548479, 51520555840, 3142746297659, 191707312312035, 11694145879618544, 713342911065035875]$ |
$59$ |
$[59, 3835, 227504, 13840515, 844548479, 51520555840, 3142746297659, 191707312312035, 11694145879618544, 713342911065035875]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-235}) \) |
$C_2$ |
simple |
| 1.61.ac |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$60$ |
$[60, 3840, 227340, 13839360, 844561500, 51520700160, 3142745610540, 191707298672640, 11694145894939260, 713342912140896000]$ |
$60$ |
$[60, 3840, 227340, 13839360, 844561500, 51520700160, 3142745610540, 191707298672640, 11694145894939260, 713342912140896000]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-15}) \) |
$C_2$ |
simple |
| 1.61.ab |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$61$ |
$[61, 3843, 227164, 13838643, 844578001, 51520795200, 3142744373221, 191707288863363, 11694145974931084, 713342913017148603]$ |
$61$ |
$[61, 3843, 227164, 13838643, 844578001, 51520795200, 3142744373221, 191707288863363, 11694145974931084, 713342913017148603]$ |
$5$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.61.a |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 61 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$62$ |
$[62, 3844, 226982, 13838400, 844596302, 51520828324, 3142742836022, 191707285305600, 11694146092834142, 713342913352075204]$ |
$62$ |
$[62, 3844, 226982, 13838400, 844596302, 51520828324, 3142742836022, 191707285305600, 11694146092834142, 713342913352075204]$ |
$6$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-61}) \) |
$C_2$ |
simple |
| 1.61.b |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$63$ |
$[63, 3843, 226800, 13838643, 844614603, 51520795200, 3142741298823, 191707288863363, 11694146210737200, 713342913017148603]$ |
$63$ |
$[63, 3843, 226800, 13838643, 844614603, 51520795200, 3142741298823, 191707288863363, 11694146210737200, 713342913017148603]$ |
$5$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.61.c |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$64$ |
$[64, 3840, 226624, 13839360, 844631104, 51520700160, 3142740061504, 191707298672640, 11694146290729024, 713342912140896000]$ |
$64$ |
$[64, 3840, 226624, 13839360, 844631104, 51520700160, 3142740061504, 191707298672640, 11694146290729024, 713342912140896000]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-15}) \) |
$C_2$ |
simple |
| 1.61.d |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$65$ |
$[65, 3835, 226460, 13840515, 844644125, 51520555840, 3142739374385, 191707312312035, 11694146306049740, 713342911065035875]$ |
$65$ |
$[65, 3835, 226460, 13840515, 844644125, 51520555840, 3142739374385, 191707312312035, 11694146306049740, 713342911065035875]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-235}) \) |
$C_2$ |
simple |
| 1.61.e |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$66$ |
$[66, 3828, 226314, 13842048, 844652226, 51520382100, 3142739393706, 191707326294528, 11694146249626434, 713342910224581428]$ |
$66$ |
$[66, 3828, 226314, 13842048, 844652226, 51520382100, 3142739393706, 191707326294528, 11694146249626434, 713342910224581428]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-57}) \) |
$C_2$ |
simple |
| 1.61.f |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$67$ |
$[67, 3819, 226192, 13843875, 844654327, 51520204224, 3142740147187, 191707336819875, 11694146137740112, 713342909985174579]$ |
$67$ |
$[67, 3819, 226192, 13843875, 844654327, 51520204224, 3142740147187, 191707336819875, 11694146137740112, 713342909985174579]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-219}) \) |
$C_2$ |
simple |
| 1.61.g |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$68$ |
$[68, 3808, 226100, 13845888, 844649828, 51520050400, 3142741514708, 191707340686848, 11694146007296900, 713342910487042528]$ |
$68$ |
$[68, 3808, 226100, 13845888, 844649828, 51520050400, 3142741514708, 191707340686848, 11694146007296900, 713342910487042528]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |
| 1.61.h |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$69$ |
$[69, 3795, 226044, 13847955, 844638729, 51519948480, 3142743229149, 191707336224195, 11694145906265004, 713342911552024875]$ |
$69$ |
$[69, 3795, 226044, 13847955, 844638729, 51519948480, 3142743229149, 191707336224195, 11694145906265004, 713342911552024875]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-195}) \) |
$C_2$ |
simple |
| 1.61.i |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$70$ |
$[70, 3780, 226030, 13849920, 844621750, 51519922020, 3142744902430, 191707324058880, 11694145878290470, 713342912704474500]$ |
$70$ |
$[70, 3780, 226030, 13849920, 844621750, 51519922020, 3142744902430, 191707324058880, 11694145878290470, 713342912704474500]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-5}) \) |
$C_2$ |
simple |
| 1.61.j |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$71$ |
$[71, 3763, 226064, 13851603, 844600451, 51519985600, 3142746081791, 191707307499843, 11694145944319184, 713342913334861003]$ |
$71$ |
$[71, 3763, 226064, 13851603, 844600451, 51519985600, 3142746081791, 191707307499843, 11694145944319184, 713342913334861003]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.61.k |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$72$ |
$[72, 3744, 226152, 13852800, 844577352, 51520139424, 3142746341352, 191707292275200, 11694146086229832, 713342912992972704]$ |
$72$ |
$[72, 3744, 226152, 13852800, 844577352, 51520139424, 3142746341352, 191707292275200, 11694146086229832, 713342912992972704]$ |
$8$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.61.l |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$73$ |
$[73, 3723, 226300, 13853283, 844556053, 51520363200, 3142745413993, 191707285320483, 11694146240022700, 713342911732093203]$ |
$73$ |
$[73, 3723, 226300, 13853283, 844556053, 51520363200, 3142745413993, 191707285320483, 11694146240022700, 713342911732093203]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |
| 1.61.m |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$74$ |
$[74, 3700, 226514, 13852800, 844541354, 51520609300, 3142743368594, 191707292275200, 11694146309012234, 713342910332792500]$ |
$74$ |
$[74, 3700, 226514, 13852800, 844541354, 51520609300, 3142743368594, 191707292275200, 11694146309012234, 713342910332792500]$ |
$3$ |
$0$ |
$4$ |
$4$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.61.n |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$75$ |
$[75, 3675, 226800, 13851075, 844539375, 51520795200, 3142740837675, 191707313304675, 11694146210737200, 713342910111391875]$ |
$75$ |
$[75, 3675, 226800, 13851075, 844539375, 51520795200, 3142740837675, 191707313304675, 11694146210737200, 713342910111391875]$ |
$3$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.61.o |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$76$ |
$[76, 3648, 227164, 13847808, 844557676, 51520795200, 3142739300476, 191707336823808, 11694145974931084, 713342911860107328]$ |
$76$ |
$[76, 3648, 227164, 13847808, 844557676, 51520795200, 3142739300476, 191707336823808, 11694145974931084, 713342911860107328]$ |
$4$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.61.p |
$1$ |
$\F_{61}$ |
$61$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 61 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$77$ |
$[77, 3619, 227612, 13842675, 844605377, 51520431424, 3142741426517, 191707330659075, 11694145913887052, 713342913269719579]$ |
$77$ |
$[77, 3619, 227612, 13842675, 844605377, 51520431424, 3142741426517, 191707330659075, 11694145913887052, 713342913269719579]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |