Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
1.59.ap |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$45$ |
$[45, 3375, 204660, 12112875, 714899475, 42180426000, 2488651334865, 146830441705875, 8662995889025580, 511116754114209375]$ |
$45$ |
$[45, 3375, 204660, 12112875, 714899475, 42180426000, 2488651334865, 146830441705875, 8662995889025580, 511116754114209375]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
1.59.ao |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$46$ |
$[46, 3404, 205114, 12118240, 714952286, 42180873644, 2488654593674, 146830461068160, 8662995963726286, 511116753947273804]$ |
$46$ |
$[46, 3404, 205114, 12118240, 714952286, 42180873644, 2488654593674, 146830461068160, 8662995963726286, 511116753947273804]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-10}) \) |
$C_2$ |
simple |
1.59.an |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$47$ |
$[47, 3431, 205484, 12121723, 714974857, 42180933584, 2488653701203, 146830442820723, 8662995755701556, 511116752174479751]$ |
$47$ |
$[47, 3431, 205484, 12121723, 714974857, 42180933584, 2488653701203, 146830442820723, 8662995755701556, 511116752174479751]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
1.59.am |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$48$ |
$[48, 3456, 205776, 12123648, 714976368, 42180787584, 2488651460112, 146830422325248, 8662995636763824, 511116752019413376]$ |
$48$ |
$[48, 3456, 205776, 12123648, 714976368, 42180787584, 2488651460112, 146830422325248, 8662995636763824, 511116752019413376]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |
1.59.al |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$49$ |
$[49, 3479, 205996, 12124315, 714964439, 42180564944, 2488649460941, 146830413494835, 8662995672859444, 511116753119350679]$ |
$49$ |
$[49, 3479, 205996, 12124315, 714964439, 42180564944, 2488649460941, 146830413494835, 8662995672859444, 511116753119350679]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-115}) \) |
$C_2$ |
simple |
1.59.ak |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$50$ |
$[50, 3500, 206150, 12124000, 714945250, 42180351500, 2488648427350, 146830417776000, 8662995800762450, 511116754291587500]$ |
$50$ |
$[50, 3500, 206150, 12124000, 714945250, 42180351500, 2488648427350, 146830417776000, 8662995800762450, 511116754291587500]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-34}) \) |
$C_2$ |
simple |
1.59.aj |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$51$ |
$[51, 3519, 206244, 12122955, 714923661, 42180197904, 2488648500879, 146830430557395, 8662995931285116, 511116754730081679]$ |
$51$ |
$[51, 3519, 206244, 12122955, 714923661, 42180197904, 2488648500879, 146830430557395, 8662995931285116, 511116754730081679]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-155}) \) |
$C_2$ |
simple |
1.59.ai |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$52$ |
$[52, 3536, 206284, 12121408, 714903332, 42180127184, 2488649470268, 146830445468928, 8662996000430356, 511116754290832976]$ |
$52$ |
$[52, 3536, 206284, 12121408, 714903332, 42180127184, 2488649470268, 146830445468928, 8662996000430356, 511116754290832976]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
1.59.ah |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$53$ |
$[53, 3551, 206276, 12119563, 714886843, 42180141584, 2488650950377, 146830456994643, 8662995985919324, 511116753327463151]$ |
$53$ |
$[53, 3551, 206276, 12119563, 714886843, 42180141584, 2488650950377, 146830456994643, 8662995985919324, 511116753327463151]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-187}) \) |
$C_2$ |
simple |
1.59.ag |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$54$ |
$[54, 3564, 206226, 12117600, 714875814, 42180228684, 2488652515746, 146830461782400, 8662995902898774, 511116752379597804]$ |
$54$ |
$[54, 3564, 206226, 12117600, 714875814, 42180228684, 2488652515746, 146830461782400, 8662995902898774, 511116752379597804]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
1.59.af |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$55$ |
$[55, 3575, 206140, 12115675, 714871025, 42180366800, 2488653793835, 146830458993075, 8662995789366820, 511116751892264375]$ |
$55$ |
$[55, 3575, 206140, 12115675, 714871025, 42180366800, 2488653793835, 146830458993075, 8662995789366820, 511116751892264375]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-211}) \) |
$C_2$ |
simple |
1.59.ae |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$56$ |
$[56, 3584, 206024, 12113920, 714872536, 42180529664, 2488654522984, 146830449991680, 8662995688952696, 511116752050978304]$ |
$56$ |
$[56, 3584, 206024, 12113920, 714872536, 42180529664, 2488654522984, 146830449991680, 8662995688952696, 511116752050978304]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-55}) \) |
$C_2$ |
simple |
1.59.ad |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$57$ |
$[57, 3591, 205884, 12112443, 714879807, 42180690384, 2488654580133, 146830437642483, 8662995636145956, 511116752750862951]$ |
$57$ |
$[57, 3591, 205884, 12112443, 714879807, 42180690384, 2488654580133, 146830437642483, 8662995636145956, 511116752750862951]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-227}) \) |
$C_2$ |
simple |
1.59.ac |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$58$ |
$[58, 3596, 205726, 12111328, 714891818, 42180824684, 2488653983342, 146830425429888, 8662995646893274, 511116753675409676]$ |
$58$ |
$[58, 3596, 205726, 12111328, 714891818, 42180824684, 2488653983342, 146830425429888, 8662995646893274, 511116753675409676]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-58}) \) |
$C_2$ |
simple |
1.59.ab |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$59$ |
$[59, 3599, 205556, 12110635, 714907189, 42180913424, 2488652874151, 146830416586515, 8662995715666604, 511116754437703679]$ |
$59$ |
$[59, 3599, 205556, 12110635, 714907189, 42180913424, 2488652874151, 146830416586515, 8662995715666604, 511116754437703679]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-235}) \) |
$C_2$ |
simple |
1.59.a |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 59 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$60$ |
$[60, 3600, 205380, 12110400, 714924300, 42180944400, 2488651484820, 146830413369600, 8662995818654940, 511116754730490000]$ |
$60$ |
$[60, 3600, 205380, 12110400, 714924300, 42180944400, 2488651484820, 146830413369600, 8662995818654940, 511116754730490000]$ |
$12$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-59}) \) |
$C_2$ |
simple |
1.59.b |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$61$ |
$[61, 3599, 205204, 12110635, 714941411, 42180913424, 2488650095489, 146830416586515, 8662995921643276, 511116754437703679]$ |
$61$ |
$[61, 3599, 205204, 12110635, 714941411, 42180913424, 2488650095489, 146830416586515, 8662995921643276, 511116754437703679]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-235}) \) |
$C_2$ |
simple |
1.59.c |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$62$ |
$[62, 3596, 205034, 12111328, 714956782, 42180824684, 2488648986298, 146830425429888, 8662995990416606, 511116753675409676]$ |
$62$ |
$[62, 3596, 205034, 12111328, 714956782, 42180824684, 2488648986298, 146830425429888, 8662995990416606, 511116753675409676]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-58}) \) |
$C_2$ |
simple |
1.59.d |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$63$ |
$[63, 3591, 204876, 12112443, 714968793, 42180690384, 2488648389507, 146830437642483, 8662996001163924, 511116752750862951]$ |
$63$ |
$[63, 3591, 204876, 12112443, 714968793, 42180690384, 2488648389507, 146830437642483, 8662996001163924, 511116752750862951]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-227}) \) |
$C_2$ |
simple |
1.59.e |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$64$ |
$[64, 3584, 204736, 12113920, 714976064, 42180529664, 2488648446656, 146830449991680, 8662995948357184, 511116752050978304]$ |
$64$ |
$[64, 3584, 204736, 12113920, 714976064, 42180529664, 2488648446656, 146830449991680, 8662995948357184, 511116752050978304]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-55}) \) |
$C_2$ |
simple |
1.59.f |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$65$ |
$[65, 3575, 204620, 12115675, 714977575, 42180366800, 2488649175805, 146830458993075, 8662995847943060, 511116751892264375]$ |
$65$ |
$[65, 3575, 204620, 12115675, 714977575, 42180366800, 2488649175805, 146830458993075, 8662995847943060, 511116751892264375]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-211}) \) |
$C_2$ |
simple |
1.59.g |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$66$ |
$[66, 3564, 204534, 12117600, 714972786, 42180228684, 2488650453894, 146830461782400, 8662995734411106, 511116752379597804]$ |
$66$ |
$[66, 3564, 204534, 12117600, 714972786, 42180228684, 2488650453894, 146830461782400, 8662995734411106, 511116752379597804]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
1.59.h |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$67$ |
$[67, 3551, 204484, 12119563, 714961757, 42180141584, 2488652019263, 146830456994643, 8662995651390556, 511116753327463151]$ |
$67$ |
$[67, 3551, 204484, 12119563, 714961757, 42180141584, 2488652019263, 146830456994643, 8662995651390556, 511116753327463151]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-187}) \) |
$C_2$ |
simple |
1.59.i |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$68$ |
$[68, 3536, 204476, 12121408, 714945268, 42180127184, 2488653499372, 146830445468928, 8662995636879524, 511116754290832976]$ |
$68$ |
$[68, 3536, 204476, 12121408, 714945268, 42180127184, 2488653499372, 146830445468928, 8662995636879524, 511116754290832976]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
1.59.j |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$69$ |
$[69, 3519, 204516, 12122955, 714924939, 42180197904, 2488654468761, 146830430557395, 8662995706024764, 511116754730081679]$ |
$69$ |
$[69, 3519, 204516, 12122955, 714924939, 42180197904, 2488654468761, 146830430557395, 8662995706024764, 511116754730081679]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-155}) \) |
$C_2$ |
simple |
1.59.k |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$70$ |
$[70, 3500, 204610, 12124000, 714903350, 42180351500, 2488654542290, 146830417776000, 8662995836547430, 511116754291587500]$ |
$70$ |
$[70, 3500, 204610, 12124000, 714903350, 42180351500, 2488654542290, 146830417776000, 8662995836547430, 511116754291587500]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-34}) \) |
$C_2$ |
simple |
1.59.l |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$71$ |
$[71, 3479, 204764, 12124315, 714884161, 42180564944, 2488653508699, 146830413494835, 8662995964450436, 511116753119350679]$ |
$71$ |
$[71, 3479, 204764, 12124315, 714884161, 42180564944, 2488653508699, 146830413494835, 8662995964450436, 511116753119350679]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-115}) \) |
$C_2$ |
simple |
1.59.m |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$72$ |
$[72, 3456, 204984, 12123648, 714872232, 42180787584, 2488651509528, 146830422325248, 8662996000546056, 511116752019413376]$ |
$72$ |
$[72, 3456, 204984, 12123648, 714872232, 42180787584, 2488651509528, 146830422325248, 8662996000546056, 511116752019413376]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-23}) \) |
$C_2$ |
simple |
1.59.n |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$73$ |
$[73, 3431, 205276, 12121723, 714873743, 42180933584, 2488649268437, 146830442820723, 8662995881608324, 511116752174479751]$ |
$73$ |
$[73, 3431, 205276, 12121723, 714873743, 42180933584, 2488649268437, 146830442820723, 8662995881608324, 511116752174479751]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
1.59.o |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$74$ |
$[74, 3404, 205646, 12118240, 714896314, 42180873644, 2488648375966, 146830461068160, 8662995673583594, 511116753947273804]$ |
$74$ |
$[74, 3404, 205646, 12118240, 714896314, 42180873644, 2488648375966, 146830461068160, 8662995673583594, 511116753947273804]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-10}) \) |
$C_2$ |
simple |
1.59.p |
$1$ |
$\F_{59}$ |
$59$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 59 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$75$ |
$[75, 3375, 206100, 12112875, 714949125, 42180426000, 2488651634775, 146830441705875, 8662995748284300, 511116754114209375]$ |
$75$ |
$[75, 3375, 206100, 12112875, 714949125, 42180426000, 2488651634775, 146830441705875, 8662995748284300, 511116754114209375]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |