# Properties

 Label 1.512.az Base Field $\F_{2^{9}}$ Dimension $1$ Ordinary Yes $p$-rank $1$ Principally polarizable Yes Contains a Jacobian Yes

## Invariants

 Base field: $\F_{2^{9}}$ Dimension: $1$ L-polynomial: $1 - 25 x + 512 x^{2}$ Frobenius angles: $\pm0.313701738688$ Angle rank: $1$ (numerical) Number field: $$\Q(\sqrt{-1423})$$ Galois group: $C_2$

This isogeny class is simple and geometrically simple.

## Newton polygon

This isogeny class is ordinary.

 $p$-rank: $1$ Slopes: $[0, 1]$

## Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 488 262544 134240504 68719841824 35184369555208 18014398259216816 9223372031895362584 4722366482873795649600 2417851639231901329881128 1237940039285444224387661264

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 488 262544 134240504 68719841824 35184369555208 18014398259216816 9223372031895362584 4722366482873795649600 2417851639231901329881128 1237940039285444224387661264

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2^{9}}$
 The endomorphism algebra of this simple isogeny class is $$\Q(\sqrt{-1423})$$.
All geometric endomorphisms are defined over $\F_{2^{9}}$.

## Base change

This is a primitive isogeny class.

## Twists

Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 1.512.z $2$ (not in LMFDB)