| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.47.an |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$35$ |
$[35, 2135, 103460, 4878475, 229346425, 10779290480, 506624030815, 23811294964275, 1119130538248940, 52599132692512175]$ |
$35$ |
$[35, 2135, 103460, 4878475, 229346425, 10779290480, 506624030815, 23811294964275, 1119130538248940, 52599132692512175]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.47.am |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$36$ |
$[36, 2160, 103788, 4881600, 229369716, 10779421680, 506624435388, 23811292742400, 1119130484268996, 52599132084034800]$ |
$36$ |
$[36, 2160, 103788, 4881600, 229369716, 10779421680, 506624435388, 23811292742400, 1119130484268996, 52599132084034800]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
| 1.47.al |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$37$ |
$[37, 2183, 104044, 4883371, 229375247, 10779374576, 506623450937, 23811282812403, 1119130415227588, 52599131780122943]$ |
$37$ |
$[37, 2183, 104044, 4883371, 229375247, 10779374576, 506623450937, 23811282812403, 1119130415227588, 52599131780122943]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.47.ak |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$38$ |
$[38, 2204, 104234, 4884064, 229369558, 10779254876, 506622362074, 23811277219200, 1119130414321478, 52599132091817564]$ |
$38$ |
$[38, 2204, 104234, 4884064, 229369558, 10779254876, 506622362074, 23811277219200, 1119130414321478, 52599132091817564]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \) |
$C_2$ |
simple |
| 1.47.aj |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$39$ |
$[39, 2223, 104364, 4883931, 229357869, 10779131376, 506621760411, 23811278367123, 1119130462373508, 52599132529114743]$ |
$39$ |
$[39, 2223, 104364, 4883931, 229357869, 10779131376, 506621760411, 23811278367123, 1119130462373508, 52599132529114743]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-107}) \) |
$C_2$ |
simple |
| 1.47.ai |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$40$ |
$[40, 2240, 104440, 4883200, 229344200, 10779043520, 506621783960, 23811284044800, 1119130514982760, 52599132693867200]$ |
$40$ |
$[40, 2240, 104440, 4883200, 229344200, 10779043520, 506621783960, 23811284044800, 1119130514982760, 52599132693867200]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-31}) \) |
$C_2$ |
simple |
| 1.47.ah |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$41$ |
$[41, 2255, 104468, 4882075, 229331491, 10779008240, 506622306133, 23811290694675, 1119130539606716, 52599132511810775]$ |
$41$ |
$[41, 2255, 104468, 4882075, 229331491, 10779008240, 506622306133, 23811290694675, 1119130539606716, 52599132511810775]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-139}) \) |
$C_2$ |
simple |
| 1.47.ag |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$42$ |
$[42, 2268, 104454, 4880736, 229321722, 10779026076, 506623079382, 23811295310208, 1119130526924298, 52599132152282268]$ |
$42$ |
$[42, 2268, 104454, 4880736, 229321722, 10779026076, 506623079382, 23811295310208, 1119130526924298, 52599132152282268]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-38}) \) |
$C_2$ |
simple |
| 1.47.af |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$43$ |
$[43, 2279, 104404, 4879339, 229316033, 10779086576, 506623838519, 23811296303475, 1119130487562748, 52599131854969439]$ |
$43$ |
$[43, 2279, 104404, 4879339, 229316033, 10779086576, 506623838519, 23811296303475, 1119130487562748, 52599131854969439]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.47.ae |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$44$ |
$[44, 2288, 104324, 4878016, 229314844, 10779172976, 506624368756, 23811293645568, 1119130442368268, 52599131784653168]$ |
$44$ |
$[44, 2288, 104324, 4878016, 229314844, 10779172976, 506624368756, 23811293645568, 1119130442368268, 52599131784653168]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.47.ad |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$45$ |
$[45, 2295, 104220, 4876875, 229317975, 10779266160, 506624543505, 23811288541875, 1119130411860180, 52599131963736975]$ |
$45$ |
$[45, 2295, 104220, 4876875, 229317975, 10779266160, 506624543505, 23811288541875, 1119130411860180, 52599131963736975]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-179}) \) |
$C_2$ |
simple |
| 1.47.ac |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$46$ |
$[46, 2300, 104098, 4876000, 229324766, 10779347900, 506624336978, 23811282864000, 1119130408331086, 52599132284781500]$ |
$46$ |
$[46, 2300, 104098, 4876000, 229324766, 10779347900, 506624336978, 23811282864000, 1119130408331086, 52599132284781500]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-46}) \) |
$C_2$ |
simple |
| 1.47.ab |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$47$ |
$[47, 2303, 103964, 4875451, 229334197, 10779403376, 506623816627, 23811278519763, 1119130432241108, 52599132577642343]$ |
$47$ |
$[47, 2303, 103964, 4875451, 229334197, 10779403376, 506623816627, 23811278519763, 1119130432241108, 52599132577642343]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-187}) \) |
$C_2$ |
simple |
| 1.47.a |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 47 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$48$ |
$[48, 2304, 103824, 4875264, 229345008, 10779422976, 506623120464, 23811276902400, 1119130473102768, 52599132694520064]$ |
$48$ |
$[48, 2304, 103824, 4875264, 229345008, 10779422976, 506623120464, 23811276902400, 1119130473102768, 52599132694520064]$ |
$10$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-47}) \) |
$C_2$ |
simple |
| 1.47.b |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$49$ |
$[49, 2303, 103684, 4875451, 229355819, 10779403376, 506622424301, 23811278519763, 1119130513964428, 52599132577642343]$ |
$49$ |
$[49, 2303, 103684, 4875451, 229355819, 10779403376, 506622424301, 23811278519763, 1119130513964428, 52599132577642343]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-187}) \) |
$C_2$ |
simple |
| 1.47.c |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$50$ |
$[50, 2300, 103550, 4876000, 229365250, 10779347900, 506621903950, 23811282864000, 1119130537874450, 52599132284781500]$ |
$50$ |
$[50, 2300, 103550, 4876000, 229365250, 10779347900, 506621903950, 23811282864000, 1119130537874450, 52599132284781500]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-46}) \) |
$C_2$ |
simple |
| 1.47.d |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$51$ |
$[51, 2295, 103428, 4876875, 229372041, 10779266160, 506621697423, 23811288541875, 1119130534345356, 52599131963736975]$ |
$51$ |
$[51, 2295, 103428, 4876875, 229372041, 10779266160, 506621697423, 23811288541875, 1119130534345356, 52599131963736975]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-179}) \) |
$C_2$ |
simple |
| 1.47.e |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$52$ |
$[52, 2288, 103324, 4878016, 229375172, 10779172976, 506621872172, 23811293645568, 1119130503837268, 52599131784653168]$ |
$52$ |
$[52, 2288, 103324, 4878016, 229375172, 10779172976, 506621872172, 23811293645568, 1119130503837268, 52599131784653168]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.47.f |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$53$ |
$[53, 2279, 103244, 4879339, 229373983, 10779086576, 506622402409, 23811296303475, 1119130458642788, 52599131854969439]$ |
$53$ |
$[53, 2279, 103244, 4879339, 229373983, 10779086576, 506622402409, 23811296303475, 1119130458642788, 52599131854969439]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.47.g |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$54$ |
$[54, 2268, 103194, 4880736, 229368294, 10779026076, 506623161546, 23811295310208, 1119130419281238, 52599132152282268]$ |
$54$ |
$[54, 2268, 103194, 4880736, 229368294, 10779026076, 506623161546, 23811295310208, 1119130419281238, 52599132152282268]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-38}) \) |
$C_2$ |
simple |
| 1.47.h |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$55$ |
$[55, 2255, 103180, 4882075, 229358525, 10779008240, 506623934795, 23811290694675, 1119130406598820, 52599132511810775]$ |
$55$ |
$[55, 2255, 103180, 4882075, 229358525, 10779008240, 506623934795, 23811290694675, 1119130406598820, 52599132511810775]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-139}) \) |
$C_2$ |
simple |
| 1.47.i |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$56$ |
$[56, 2240, 103208, 4883200, 229345816, 10779043520, 506624456968, 23811284044800, 1119130431222776, 52599132693867200]$ |
$56$ |
$[56, 2240, 103208, 4883200, 229345816, 10779043520, 506624456968, 23811284044800, 1119130431222776, 52599132693867200]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-31}) \) |
$C_2$ |
simple |
| 1.47.j |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$57$ |
$[57, 2223, 103284, 4883931, 229332147, 10779131376, 506624480517, 23811278367123, 1119130483832028, 52599132529114743]$ |
$57$ |
$[57, 2223, 103284, 4883931, 229332147, 10779131376, 506624480517, 23811278367123, 1119130483832028, 52599132529114743]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-107}) \) |
$C_2$ |
simple |
| 1.47.k |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$58$ |
$[58, 2204, 103414, 4884064, 229320458, 10779254876, 506623878854, 23811277219200, 1119130531884058, 52599132091817564]$ |
$58$ |
$[58, 2204, 103414, 4884064, 229320458, 10779254876, 506623878854, 23811277219200, 1119130531884058, 52599132091817564]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-22}) \) |
$C_2$ |
simple |
| 1.47.l |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$59$ |
$[59, 2183, 103604, 4883371, 229314769, 10779374576, 506622789991, 23811282812403, 1119130530977948, 52599131780122943]$ |
$59$ |
$[59, 2183, 103604, 4883371, 229314769, 10779374576, 506622789991, 23811282812403, 1119130530977948, 52599131780122943]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.47.m |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$60$ |
$[60, 2160, 103860, 4881600, 229320300, 10779421680, 506621805540, 23811292742400, 1119130461936540, 52599132084034800]$ |
$60$ |
$[60, 2160, 103860, 4881600, 229320300, 10779421680, 506621805540, 23811292742400, 1119130461936540, 52599132084034800]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$C_2$ |
simple |
| 1.47.n |
$1$ |
$\F_{47}$ |
$47$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 47 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$61$ |
$[61, 2135, 104188, 4878475, 229343591, 10779290480, 506622210113, 23811294964275, 1119130407956596, 52599132692512175]$ |
$61$ |
$[61, 2135, 104188, 4878475, 229343591, 10779290480, 506622210113, 23811294964275, 1119130407956596, 52599132692512175]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |