Properties

Label 1.467.aj
Base Field $\F_{467}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{467}$
Dimension:  $1$
L-polynomial:  $1 - 9 x + 467 x^{2}$
Frobenius angles:  $\pm0.433228063969$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1787}) \)
Galois group:  $C_2$
Jacobians:  7

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 7 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 459 218943 101859444 47562520491 22211824996269 10372926151599696 4844156487960026871 2262221077842613306323 1056457243345786834209228 493365532643372243243119743

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 459 218943 101859444 47562520491 22211824996269 10372926151599696 4844156487960026871 2262221077842613306323 1056457243345786834209228 493365532643372243243119743

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{467}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1787}) \).
All geometric endomorphisms are defined over $\F_{467}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.467.j$2$(not in LMFDB)