Properties

Label 1.463.abo
Base Field $\F_{463}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{463}$
Dimension:  $1$
L-polynomial:  $1 - 40 x + 463 x^{2}$
Frobenius angles:  $\pm0.120257119394$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-7}) \)
Galois group:  $C_2$
Jacobians:  10

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 10 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 424 213696 99244408 45954042624 21276736444744 9851127764877504 4561072099965877528 2111776380637089868800 977752464194632976351464 452699390921264095324959936

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 424 213696 99244408 45954042624 21276736444744 9851127764877504 4561072099965877528 2111776380637089868800 977752464194632976351464 452699390921264095324959936

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{463}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-7}) \).
All geometric endomorphisms are defined over $\F_{463}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.463.bo$2$(not in LMFDB)