Properties

Label 1.449.an
Base Field $\F_{449}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{449}$
Dimension:  $1$
L-polynomial:  $1 - 13 x + 449 x^{2}$
Frobenius angles:  $\pm0.400757123030$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1627}) \)
Galois group:  $C_2$
Jacobians:  7

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 7 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 437 202331 90534164 40642834963 18248681934157 8193661970803904 3678954252044472733 1651850457822680851683 741680855532703035532436 333014704134401848329555851

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 437 202331 90534164 40642834963 18248681934157 8193661970803904 3678954252044472733 1651850457822680851683 741680855532703035532436 333014704134401848329555851

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{449}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1627}) \).
All geometric endomorphisms are defined over $\F_{449}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.449.n$2$(not in LMFDB)