Properties

Label 1.443.az
Base Field $\F_{443}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{443}$
Dimension:  $1$
L-polynomial:  $1 - 25 x + 443 x^{2}$
Frobenius angles:  $\pm0.297590270864$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1147}) \)
Galois group:  $C_2$
Jacobians:  6

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 6 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 419 196511 86955908 38513994379 17061556123069 7558269088142864 3348313262708050783 1483302776917734241875 657103130187907245010844 291096686672895319925086511

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 419 196511 86955908 38513994379 17061556123069 7558269088142864 3348313262708050783 1483302776917734241875 657103130187907245010844 291096686672895319925086511

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{443}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1147}) \).
All geometric endomorphisms are defined over $\F_{443}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.443.z$2$(not in LMFDB)