Properties

Label 1.443.an
Base Field $\F_{443}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{443}$
Dimension:  $1$
L-polynomial:  $1 - 13 x + 443 x^{2}$
Frobenius angles:  $\pm0.400064484292$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1603}) \)
Galois group:  $C_2$
Jacobians:  6

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 6 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 431 196967 86953388 38513548411 17061547549321 7558269170496464 3348313269207418579 1483302777008170308723 657103130186542011123764 291096686672827171506256007

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 431 196967 86953388 38513548411 17061547549321 7558269170496464 3348313269207418579 1483302777008170308723 657103130186542011123764 291096686672827171506256007

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{443}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1603}) \).
All geometric endomorphisms are defined over $\F_{443}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.443.n$2$(not in LMFDB)