Properties

Label 1.443.abq
Base Field $\F_{443}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{443}$
Dimension:  $1$
L-polynomial:  $1 - 42 x + 443 x^{2}$
Frobenius angles:  $\pm0.0214037853635$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-2}) \)
Galois group:  $C_2$
Jacobians:  1

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 402 195372 86920038 38513291616 17061548011842 7558269064109964 3348313262981924982 1483302776879778715008 657103130185712503944114 291096686672834599466322732

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 402 195372 86920038 38513291616 17061548011842 7558269064109964 3348313262981924982 1483302776879778715008 657103130185712503944114 291096686672834599466322732

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{443}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}) \).
All geometric endomorphisms are defined over $\F_{443}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.443.bq$2$(not in LMFDB)