Properties

Label 1.443.abb
Base Field $\F_{443}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{443}$
Dimension:  $1$
L-polynomial:  $1 - 27 x + 443 x^{2}$
Frobenius angles:  $\pm0.278352118269$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1043}) \)
Galois group:  $C_2$
Jacobians:  8

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 8 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 417 196407 86954508 38514037851 17061558565767 7558269135462864 3348313262631808797 1483302776887641793203 657103130187072137900244 291096686672887825854642807

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 417 196407 86954508 38514037851 17061558565767 7558269135462864 3348313262631808797 1483302776887641793203 657103130187072137900244 291096686672887825854642807

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{443}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1043}) \).
All geometric endomorphisms are defined over $\F_{443}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.443.bb$2$(not in LMFDB)