Properties

Label 1.443.aba
Base Field $\F_{443}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{443}$
Dimension:  $1$
L-polynomial:  $1 - 26 x + 443 x^{2}$
Frobenius angles:  $\pm0.288085398527$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-274}) \)
Galois group:  $C_2$
Jacobians:  12

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 12 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 418 196460 86955286 38514018400 17061557347538 7558269109650380 3348313262588923046 1483302776901573513600 657103130187511646565058 291096686672893055001512300

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 418 196460 86955286 38514018400 17061557347538 7558269109650380 3348313262588923046 1483302776901573513600 657103130187511646565058 291096686672893055001512300

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{443}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-274}) \).
All geometric endomorphisms are defined over $\F_{443}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.443.ba$2$(not in LMFDB)