Properties

Label 1.433.av
Base Field $\F_{433}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{433}$
Dimension:  $1$
L-polynomial:  $1 - 21 x + 433 x^{2}$
Frobenius angles:  $\pm0.331640794823$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1291}) \)
Galois group:  $C_2$
Jacobians:  9

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 9 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 413 187915 81200756 35152319475 15220866457013 6590636624528320 2853745726892221301 1235671900554970426275 535045932927677463425588 231674888957068215793846075

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 413 187915 81200756 35152319475 15220866457013 6590636624528320 2853745726892221301 1235671900554970426275 535045932927677463425588 231674888957068215793846075

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{433}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1291}) \).
All geometric endomorphisms are defined over $\F_{433}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.433.v$2$(not in LMFDB)