Properties

Label 1.433.ac
Base Field $\F_{433}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{433}$
Dimension:  $1$
L-polynomial:  $1 - 2 x + 433 x^{2}$
Frobenius angles:  $\pm0.484697108967$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}) \)
Galois group:  $C_2$
Jacobians:  30

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 30 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 432 188352 81185328 35151757056 15220868319792 6590636942468544 2853745729804892592 1235671900457270934528 535045932925602785702064 231674888957078606343440832

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 432 188352 81185328 35151757056 15220868319792 6590636942468544 2853745729804892592 1235671900457270934528 535045932925602785702064 231674888957078606343440832

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{433}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \).
All geometric endomorphisms are defined over $\F_{433}$.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
1.433.c$2$(not in LMFDB)
1.433.abj$3$(not in LMFDB)
1.433.bl$3$(not in LMFDB)
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.433.c$2$(not in LMFDB)
1.433.abj$3$(not in LMFDB)
1.433.bl$3$(not in LMFDB)
1.433.abl$6$(not in LMFDB)
1.433.bj$6$(not in LMFDB)