Properties

Label 1.433.abn
Base Field $\F_{433}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{433}$
Dimension:  $1$
L-polynomial:  $1 - 39 x + 433 x^{2}$
Frobenius angles:  $\pm0.113490108244$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-211}) \)
Galois group:  $C_2$
Jacobians:  3

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 3 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 395 186835 81174080 35152071075 15220871818475 6590636874215680 2853745731387423995 1235671900589822436675 535045932927675829974080 231674888957079363881782675

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 395 186835 81174080 35152071075 15220871818475 6590636874215680 2853745731387423995 1235671900589822436675 535045932927675829974080 231674888957079363881782675

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{433}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-211}) \).
All geometric endomorphisms are defined over $\F_{433}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.433.bn$2$(not in LMFDB)