Properties

Label 1.433.aba
Base Field $\F_{433}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{433}$
Dimension:  $1$
L-polynomial:  $1 - 26 x + 433 x^{2}$
Frobenius angles:  $\pm0.285204909547$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-66}) \)
Galois group:  $C_2$
Jacobians:  24

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 24 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 408 187680 81198936 35152464000 15220871974488 6590636686801440 2853745725310841496 1235671900477905216000 535045932926521161222168 231674888957078827481786400

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 408 187680 81198936 35152464000 15220871974488 6590636686801440 2853745725310841496 1235671900477905216000 535045932926521161222168 231674888957078827481786400

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{433}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-66}) \).
All geometric endomorphisms are defined over $\F_{433}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.433.ba$2$(not in LMFDB)