| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.43.an |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$31$ |
$[31, 1767, 78988, 3415611, 146989321, 6321251664, 271817985379, 11688196932723, 502592595359764, 21611482241612007]$ |
$31$ |
$[31, 1767, 78988, 3415611, 146989321, 6321251664, 271817985379, 11688196932723, 502592595359764, 21611482241612007]$ |
$1$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.43.am |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$32$ |
$[32, 1792, 79328, 3419136, 147020192, 6321489664, 271819625312, 11688207003648, 502592649038624, 21611482469285632]$ |
$32$ |
$[32, 1792, 79328, 3419136, 147020192, 6321489664, 271819625312, 11688207003648, 502592649038624, 21611482469285632]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.43.al |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$33$ |
$[33, 1815, 79596, 3421275, 147031863, 6321514320, 271819268061, 11688200999475, 502592591628468, 21611482058851575]$ |
$33$ |
$[33, 1815, 79596, 3421275, 147031863, 6321514320, 271819268061, 11688200999475, 502592591628468, 21611482058851575]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
| 1.43.ak |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$34$ |
$[34, 1836, 79798, 3422304, 147030994, 6321437964, 271818390598, 11688194851200, 502592567154754, 21611482098798636]$ |
$34$ |
$[34, 1836, 79798, 3422304, 147030994, 6321437964, 271818390598, 11688194851200, 502592567154754, 21611482098798636]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.43.aj |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$35$ |
$[35, 1855, 79940, 3422475, 147022925, 6321335440, 271817739935, 11688193624275, 502592589517340, 21611482397601775]$ |
$35$ |
$[35, 1855, 79940, 3422475, 147022925, 6321335440, 271817739935, 11688193624275, 502592589517340, 21611482397601775]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-91}) \) |
$C_2$ |
simple |
| 1.43.ai |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$36$ |
$[36, 1872, 80028, 3422016, 147011796, 6321251664, 271817575884, 11688196785408, 502592628513924, 21611482596065232]$ |
$36$ |
$[36, 1872, 80028, 3422016, 147011796, 6321251664, 271817575884, 11688196785408, 502592628513924, 21611482596065232]$ |
$6$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.43.ah |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$37$ |
$[37, 1887, 80068, 3421131, 147000667, 6321208464, 271817863417, 11688201690963, 502592653981084, 21611482546819407]$ |
$37$ |
$[37, 1887, 80068, 3421131, 147000667, 6321208464, 271817863417, 11688201690963, 502592653981084, 21611482546819407]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |
| 1.43.ag |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$38$ |
$[38, 1900, 80066, 3420000, 146991638, 6321210700, 271818419666, 11688205680000, 502592652583238, 21611482324859500]$ |
$38$ |
$[38, 1900, 80066, 3420000, 146991638, 6321210700, 271818419666, 11688205680000, 502592652583238, 21611482324859500]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-34}) \) |
$C_2$ |
simple |
| 1.43.af |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$39$ |
$[39, 1911, 80028, 3418779, 146985969, 6321251664, 271819020603, 11688207114675, 502592628513924, 21611482102175511]$ |
$39$ |
$[39, 1911, 80028, 3418779, 146985969, 6321251664, 271819020603, 11688207114675, 502592628513924, 21611482102175511]$ |
$3$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.43.ae |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$40$ |
$[40, 1920, 79960, 3417600, 146984200, 6321317760, 271819472440, 11688205670400, 502592596470760, 21611482019529600]$ |
$40$ |
$[40, 1920, 79960, 3417600, 146984200, 6321317760, 271819472440, 11688205670400, 502592596470760, 21611482019529600]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-39}) \) |
$C_2$ |
simple |
| 1.43.ad |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$41$ |
$[41, 1927, 79868, 3416571, 146986271, 6321392464, 271819652789, 11688202137843, 502592572725284, 21611482115659207]$ |
$41$ |
$[41, 1927, 79868, 3416571, 146986271, 6321392464, 271819652789, 11688202137843, 502592572725284, 21611482115659207]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.43.ac |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$42$ |
$[42, 1932, 79758, 3415776, 146991642, 6321459564, 271819526622, 11688197958528, 502592567931594, 21611482324993932]$ |
$42$ |
$[42, 1932, 79758, 3415776, 146991642, 6321459564, 271819526622, 11688197958528, 502592567931594, 21611482324993932]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-42}) \) |
$C_2$ |
simple |
| 1.43.ab |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$43$ |
$[43, 1935, 79636, 3415275, 146999413, 6321505680, 271819142071, 11688194675475, 502592583503308, 21611482525742175]$ |
$43$ |
$[43, 1935, 79636, 3415275, 146999413, 6321505680, 271819142071, 11688194675475, 502592583503308, 21611482525742175]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.43.a |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 43 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$44$ |
$[44, 1936, 79508, 3415104, 147008444, 6321522064, 271818611108, 11688193440000, 502592611936844, 21611482607301136]$ |
$44$ |
$[44, 1936, 79508, 3415104, 147008444, 6321522064, 271818611108, 11688193440000, 502592611936844, 21611482607301136]$ |
$4$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.43.b |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$45$ |
$[45, 1935, 79380, 3415275, 147017475, 6321505680, 271818080145, 11688194675475, 502592640370380, 21611482525742175]$ |
$45$ |
$[45, 1935, 79380, 3415275, 147017475, 6321505680, 271818080145, 11688194675475, 502592640370380, 21611482525742175]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.43.c |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$46$ |
$[46, 1932, 79258, 3415776, 147025246, 6321459564, 271817695594, 11688197958528, 502592655942094, 21611482324993932]$ |
$46$ |
$[46, 1932, 79258, 3415776, 147025246, 6321459564, 271817695594, 11688197958528, 502592655942094, 21611482324993932]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-42}) \) |
$C_2$ |
simple |
| 1.43.d |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$47$ |
$[47, 1927, 79148, 3416571, 147030617, 6321392464, 271817569427, 11688202137843, 502592651148404, 21611482115659207]$ |
$47$ |
$[47, 1927, 79148, 3416571, 147030617, 6321392464, 271817569427, 11688202137843, 502592651148404, 21611482115659207]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.43.e |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$48$ |
$[48, 1920, 79056, 3417600, 147032688, 6321317760, 271817749776, 11688205670400, 502592627402928, 21611482019529600]$ |
$48$ |
$[48, 1920, 79056, 3417600, 147032688, 6321317760, 271817749776, 11688205670400, 502592627402928, 21611482019529600]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-39}) \) |
$C_2$ |
simple |
| 1.43.f |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$49$ |
$[49, 1911, 78988, 3418779, 147030919, 6321251664, 271818201613, 11688207114675, 502592595359764, 21611482102175511]$ |
$49$ |
$[49, 1911, 78988, 3418779, 147030919, 6321251664, 271818201613, 11688207114675, 502592595359764, 21611482102175511]$ |
$3$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.43.g |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$50$ |
$[50, 1900, 78950, 3420000, 147025250, 6321210700, 271818802550, 11688205680000, 502592571290450, 21611482324859500]$ |
$50$ |
$[50, 1900, 78950, 3420000, 147025250, 6321210700, 271818802550, 11688205680000, 502592571290450, 21611482324859500]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-34}) \) |
$C_2$ |
simple |
| 1.43.h |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$51$ |
$[51, 1887, 78948, 3421131, 147016221, 6321208464, 271819358799, 11688201690963, 502592569892604, 21611482546819407]$ |
$51$ |
$[51, 1887, 78948, 3421131, 147016221, 6321208464, 271819358799, 11688201690963, 502592569892604, 21611482546819407]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |
| 1.43.i |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$52$ |
$[52, 1872, 78988, 3422016, 147005092, 6321251664, 271819646332, 11688196785408, 502592595359764, 21611482596065232]$ |
$52$ |
$[52, 1872, 78988, 3422016, 147005092, 6321251664, 271819646332, 11688196785408, 502592595359764, 21611482596065232]$ |
$6$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.43.j |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$53$ |
$[53, 1855, 79076, 3422475, 146993963, 6321335440, 271819482281, 11688193624275, 502592634356348, 21611482397601775]$ |
$53$ |
$[53, 1855, 79076, 3422475, 146993963, 6321335440, 271819482281, 11688193624275, 502592634356348, 21611482397601775]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-91}) \) |
$C_2$ |
simple |
| 1.43.k |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$54$ |
$[54, 1836, 79218, 3422304, 146985894, 6321437964, 271818831618, 11688194851200, 502592656718934, 21611482098798636]$ |
$54$ |
$[54, 1836, 79218, 3422304, 146985894, 6321437964, 271818831618, 11688194851200, 502592656718934, 21611482098798636]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.43.l |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$55$ |
$[55, 1815, 79420, 3421275, 146985025, 6321514320, 271817954155, 11688200999475, 502592632245220, 21611482058851575]$ |
$55$ |
$[55, 1815, 79420, 3421275, 146985025, 6321514320, 271817954155, 11688200999475, 502592632245220, 21611482058851575]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
| 1.43.m |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$56$ |
$[56, 1792, 79688, 3419136, 146996696, 6321489664, 271817596904, 11688207003648, 502592574835064, 21611482469285632]$ |
$56$ |
$[56, 1792, 79688, 3419136, 146996696, 6321489664, 271817596904, 11688207003648, 502592574835064, 21611482469285632]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.43.n |
$1$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 43 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$57$ |
$[57, 1767, 80028, 3415611, 147027567, 6321251664, 271819236837, 11688196932723, 502592628513924, 21611482241612007]$ |
$57$ |
$[57, 1767, 80028, 3415611, 147027567, 6321251664, 271819236837, 11688196932723, 502592628513924, 21611482241612007]$ |
$1$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |