Properties

Label 1.421.e
Base Field $\F_{421}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{421}$
Dimension:  $1$
L-polynomial:  $1 + 4 x + 421 x^{2}$
Frobenius angles:  $\pm0.531076292637$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-417}) \)
Galois group:  $C_2$
Jacobians:  12

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 12 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 426 178068 74613474 31414044288 13225454057226 5567914846365300 2344092096032077026 986862773198892108288 415469227536511154398314 174912544792468173480851028

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 426 178068 74613474 31414044288 13225454057226 5567914846365300 2344092096032077026 986862773198892108288 415469227536511154398314 174912544792468173480851028

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{421}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-417}) \).
All geometric endomorphisms are defined over $\F_{421}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.421.ae$2$(not in LMFDB)