Properties

Label 1.419.abj
Base Field $\F_{419}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{419}$
Dimension:  $1$
L-polynomial:  $1 - 35 x + 419 x^{2}$
Frobenius angles:  $\pm0.173599406907$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-451}) \)
Galois group:  $C_2$
Jacobians:  6

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 6 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 385 175175 73561180 30821866075 12914284096175 5411082425949200 2267243477704065245 949975016194836306675 398039531776549630415140 166778563814459824756904375

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 385 175175 73561180 30821866075 12914284096175 5411082425949200 2267243477704065245 949975016194836306675 398039531776549630415140 166778563814459824756904375

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{419}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-451}) \).
All geometric endomorphisms are defined over $\F_{419}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.419.bj$2$(not in LMFDB)