Properties

Label 1.409.abj
Base field $\F_{409}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{409}$
Dimension:  $1$
L-polynomial:  $1 - 35 x + 409 x^{2}$
Frobenius angles:  $\pm0.167115632457$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-411}) \)
Galois group:  $C_2$
Jacobians:  $6$
Isomorphism classes:  6

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $375$ $166875$ $68418000$ $27983101875$ $11445025464375$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $375$ $166875$ $68418000$ $27983101875$ $11445025464375$ $4681013145480000$ $1914534322920261375$ $783044537127254491875$ $320265215673812105634000$ $130988473210583304006046875$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{409}$.

Endomorphism algebra over $\F_{409}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-411}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.409.bj$2$(not in LMFDB)