Invariants
| Base field: | $\F_{409}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 35 x + 409 x^{2}$ |
| Frobenius angles: | $\pm0.167115632457$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-411}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $6$ |
| Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $375$ | $166875$ | $68418000$ | $27983101875$ | $11445025464375$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $375$ | $166875$ | $68418000$ | $27983101875$ | $11445025464375$ | $4681013145480000$ | $1914534322920261375$ | $783044537127254491875$ | $320265215673812105634000$ | $130988473210583304006046875$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+26 x+26$
- $y^2=x^3+310 x+125$
- $y^2=x^3+298 x+298$
- $y^2=x^3+309 x+309$
- $y^2=x^3+277 x+303$
- $y^2=x^3+247 x+247$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{409}$.
Endomorphism algebra over $\F_{409}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-411}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.409.bj | $2$ | (not in LMFDB) |