Properties

Label 1.401.az
Base Field $\F_{401}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{401}$
Dimension:  $1$
L-polynomial:  $1 - 25 x + 401 x^{2}$
Frobenius angles:  $\pm0.285416800366$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-979}) \)
Galois group:  $C_2$
Jacobians:  8

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 8 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 377 160979 64495652 25857251875 10368643064377 4157825202562304 1667287935660947977 668582463203043991875 268101567757692917825252 107508728670764462429767379

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 377 160979 64495652 25857251875 10368643064377 4157825202562304 1667287935660947977 668582463203043991875 268101567757692917825252 107508728670764462429767379

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{401}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-979}) \).
All geometric endomorphisms are defined over $\F_{401}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.401.z$2$(not in LMFDB)