Properties

Label 1.401.ab
Base Field $\F_{401}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{401}$
Dimension:  $1$
L-polynomial:  $1 - x + 401 x^{2}$
Frobenius angles:  $\pm0.492051355352$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1603}) \)
Galois group:  $C_2$
Jacobians:  6

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 6 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 401 161603 64482404 25856641603 10368640800001 4157825409920000 1667287938692482801 668582463184903046403 268101567757240199207204 107508728670765957764804003

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 401 161603 64482404 25856641603 10368640800001 4157825409920000 1667287938692482801 668582463184903046403 268101567757240199207204 107508728670765957764804003

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{401}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1603}) \).
All geometric endomorphisms are defined over $\F_{401}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.401.b$2$(not in LMFDB)