Properties

Label 1.397.ad
Base Field $\F_{397}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{397}$
Dimension:  $1$
L-polynomial:  $1 - 3 x + 397 x^{2}$
Frobenius angles:  $\pm0.476014033879$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1579}) \)
Galois group:  $C_2$
Jacobians:  9

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 9 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 395 158395 62574320 24840295875 9861714650975 3915101746384960 1554295349880642155 617055253363422907875 244970935600904690412080 97253461433820098716377475

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 395 158395 62574320 24840295875 9861714650975 3915101746384960 1554295349880642155 617055253363422907875 244970935600904690412080 97253461433820098716377475

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{397}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1579}) \).
All geometric endomorphisms are defined over $\F_{397}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.397.d$2$(not in LMFDB)