Properties

Label 1.397.abn
Base Field $\F_{397}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{397}$
Dimension:  $1$
L-polynomial:  $1 - 39 x + 397 x^{2}$
Frobenius angles:  $\pm0.0658513332532$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-67}) \)
Galois group:  $C_2$
Jacobians:  1

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 359 156883 62557904 24840383571 9861713752019 3915101593322176 1554295348320506591 617055253408526539203 244970935601809841122448 97253461433815136010002443

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 359 156883 62557904 24840383571 9861713752019 3915101593322176 1554295348320506591 617055253408526539203 244970935601809841122448 97253461433815136010002443

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{397}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-67}) \).
All geometric endomorphisms are defined over $\F_{397}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.397.bn$2$(not in LMFDB)