Properties

Label 1.397.abk
Base Field $\F_{397}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{397}$
Dimension:  $1$
L-polynomial:  $1 - 36 x + 397 x^{2}$
Frobenius angles:  $\pm0.141067461598$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-73}) \)
Galois group:  $C_2$
Jacobians:  4

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 4 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 362 157108 62566994 24840660096 9861720738122 3915101744670676 1554295351117055762 617055253450032112128 244970935602181272893738 97253461433811177509390068

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 362 157108 62566994 24840660096 9861720738122 3915101744670676 1554295351117055762 617055253450032112128 244970935602181272893738 97253461433811177509390068

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{397}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-73}) \).
All geometric endomorphisms are defined over $\F_{397}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.397.bk$2$(not in LMFDB)