Properties

Label 1.389.j
Base Field $\F_{389}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{389}$
Dimension:  $1$
L-polynomial:  $1 + 9 x + 389 x^{2}$
Frobenius angles:  $\pm0.573270621812$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-59}) \)
Galois group:  $C_2$
Jacobians:  15

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 15 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 399 152019 58854096 22897861875 8907344971539 3464955095845824 1347867521329474551 524320466711910631875 203960661546961850693904 79340697341448066568455579

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 399 152019 58854096 22897861875 8907344971539 3464955095845824 1347867521329474551 524320466711910631875 203960661546961850693904 79340697341448066568455579

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{389}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-59}) \).
All geometric endomorphisms are defined over $\F_{389}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.389.aj$2$(not in LMFDB)