Properties

Label 1.389.an
Base Field $\F_{389}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{389}$
Dimension:  $1$
L-polynomial:  $1 - 13 x + 389 x^{2}$
Frobenius angles:  $\pm0.393098563793$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1387}) \)
Galois group:  $C_2$
Jacobians:  4

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 4 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 377 151931 58876844 22897976803 8907333586957 3464955023052224 1347867525300086713 524320466740804220643 203960661546062309901116 79340697341442563215978451

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 377 151931 58876844 22897976803 8907333586957 3464955023052224 1347867525300086713 524320466740804220643 203960661546062309901116 79340697341442563215978451

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{389}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1387}) \).
All geometric endomorphisms are defined over $\F_{389}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.389.n$2$(not in LMFDB)