Properties

Label 1.389.ak
Base Field $\F_{389}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{389}$
Dimension:  $1$
L-polynomial:  $1 - 10 x + 389 x^{2}$
Frobenius angles:  $\pm0.418414903734$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-91}) \)
Galois group:  $C_2$
Jacobians:  20

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 20 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 380 152000 58874540 22897888000 8907333799900 3464955077528000 1347867525913800460 524320466720798592000 203960661545500100380220 79340697341445045075800000

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 380 152000 58874540 22897888000 8907333799900 3464955077528000 1347867525913800460 524320466720798592000 203960661545500100380220 79340697341445045075800000

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{389}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-91}) \).
All geometric endomorphisms are defined over $\F_{389}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.389.k$2$(not in LMFDB)