Properties

Label 1.361.m
Base Field $\F_{19^{2}}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{19^{2}}$
Dimension:  $1$
L-polynomial:  $1 + 12 x + 361 x^{2}$
Frobenius angles:  $\pm0.602269334281$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-13}) \)
Galois group:  $C_2$
Jacobians:  14

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 14 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 374 130900 47034614 16983489600 6131071206854 2213314886190100 799006684390789094 288441413596194566400 104127350298070907053334 37589973457533727210172500

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 374 130900 47034614 16983489600 6131071206854 2213314886190100 799006684390789094 288441413596194566400 104127350298070907053334 37589973457533727210172500

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{19^{2}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-13}) \).
All geometric endomorphisms are defined over $\F_{19^{2}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.361.am$2$(not in LMFDB)