Properties

Label 1.361.abi
Base Field $\F_{19^{2}}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{19^{2}}$
Dimension:  $1$
L-polynomial:  $1 - 34 x + 361 x^{2}$
Frobenius angles:  $\pm0.147363066759$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-2}) \)
Galois group:  $C_2$
Jacobians:  9

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 9 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 328 129888 47043400 16983635328 6131069611528 2213315006997600 799006687561857928 288441413596363027968 104127350298246255238600 37589973457546972847788128

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 328 129888 47043400 16983635328 6131069611528 2213315006997600 799006687561857928 288441413596363027968 104127350298246255238600 37589973457546972847788128

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{19^{2}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}) \).
All geometric endomorphisms are defined over $\F_{19^{2}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.361.bi$2$(not in LMFDB)