Properties

Label 1.353.i
Base Field $\F_{353}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{353}$
Dimension:  $1$
L-polynomial:  $1 + 8 x + 353 x^{2}$
Frobenius angles:  $\pm0.568290372896$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-337}) \)
Galois group:  $C_2$
Jacobians:  8

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 8 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 362 125252 43979018 15527239936 5481177330442 1934854170210884 683003511747334762 241100240233390507008 85108384801343197031594 30043259834675434555947332

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 362 125252 43979018 15527239936 5481177330442 1934854170210884 683003511747334762 241100240233390507008 85108384801343197031594 30043259834675434555947332

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{353}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-337}) \).
All geometric endomorphisms are defined over $\F_{353}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.353.ai$2$(not in LMFDB)