Properties

Label 1.353.ar
Base Field $\F_{353}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{353}$
Dimension:  $1$
L-polynomial:  $1 - 17 x + 353 x^{2}$
Frobenius angles:  $\pm0.350564606614$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1123}) \)
Galois group:  $C_2$
Jacobians:  5

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 5 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 337 125027 44000068 15527478211 5481169876817 1934854062224384 683003513158002737 241100240254267447683 85108384801312724399044 30043259834681198228004707

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 337 125027 44000068 15527478211 5481169876817 1934854062224384 683003513158002737 241100240254267447683 85108384801312724399044 30043259834681198228004707

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{353}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1123}) \).
All geometric endomorphisms are defined over $\F_{353}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.353.r$2$(not in LMFDB)