Properties

Label 1.353.a
Base Field $\F_{353}$
Dimension $1$
Ordinary No
$p$-rank $0$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{353}$
Dimension:  $1$
L-polynomial:  $1 + 353 x^{2}$
Frobenius angles:  $\pm0.5$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\sqrt{-353}) \)
Galois group:  $C_2$
Jacobians:  16

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2]$

Point counts

This isogeny class contains the Jacobians of 16 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 354 125316 43986978 15527153664 5481173216994 1934854233572484 683003513396280738 241100240197832294400 85108384800797146356834 30043259834692355010396036

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 354 125316 43986978 15527153664 5481173216994 1934854233572484 683003513396280738 241100240197832294400 85108384800797146356834 30043259834692355010396036

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{353}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-353}) \).
Endomorphism algebra over $\overline{\F}_{353}$
The base change of $A$ to $\F_{353^{2}}$ is the simple isogeny class 1.124609.bbe and its endomorphism algebra is the quaternion algebra over \(\Q\) ramified at $353$ and $\infty$.
All geometric endomorphisms are defined over $\F_{353^{2}}$.

Base change

This is a primitive isogeny class.

Twists

This isogeny class has no twists.