# Properties

 Label 1.347.a Base Field $\F_{347}$ Dimension $1$ Ordinary No $p$-rank $0$ Principally polarizable Yes Contains a Jacobian Yes

# Learn more about

## Invariants

 Base field: $\F_{347}$ Dimension: $1$ L-polynomial: $1 + 347 x^{2}$ Frobenius angles: $\pm0.5$ Angle rank: $0$ (numerical) Number field: $$\Q(\sqrt{-347})$$ Galois group: $C_2$ Jacobians: 20

This isogeny class is simple and geometrically simple.

## Newton polygon

This isogeny class is supersingular.

 $p$-rank: $0$ Slopes: $[1/2, 1/2]$

## Point counts

This isogeny class contains the Jacobians of 20 curves, and hence is principally polarizable:

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 348 121104 41781924 14498086464 5030919566508 1745729173141776 605767994083541364 210201493917992198400 72939918399605131977468 25310151684673042635314064

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 348 121104 41781924 14498086464 5030919566508 1745729173141776 605767994083541364 210201493917992198400 72939918399605131977468 25310151684673042635314064

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{347}$
 The endomorphism algebra of this simple isogeny class is $$\Q(\sqrt{-347})$$.
Endomorphism algebra over $\overline{\F}_{347}$
 The base change of $A$ to $\F_{347^{2}}$ is the simple isogeny class 1.120409.bas and its endomorphism algebra is the quaternion algebra over $$\Q$$ ramified at $347$ and $\infty$.
All geometric endomorphisms are defined over $\F_{347^{2}}$.

## Base change

This is a primitive isogeny class.

## Twists

This isogeny class has no twists.