Properties

Label 1.343.r
Base Field $\F_{7^{3}}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{7^{3}}$
Dimension:  $1$
L-polynomial:  $1 + 17 x + 343 x^{2}$
Frobenius angles:  $\pm0.651776755848$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}) \)
Galois group:  $C_2$
Jacobians:  7

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 7 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 361 118047 40341028 13841364891 4747564504171 1628413520361264 558545864374600309 191581231402213408083 65712362363066359755724 22539340290692787815555607

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 361 118047 40341028 13841364891 4747564504171 1628413520361264 558545864374600309 191581231402213408083 65712362363066359755724 22539340290692787815555607

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{7^{3}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \).
All geometric endomorphisms are defined over $\F_{7^{3}}$.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
1.343.ar$2$(not in LMFDB)
1.343.abl$3$(not in LMFDB)
1.343.u$3$(not in LMFDB)
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.343.ar$2$(not in LMFDB)
1.343.abl$3$(not in LMFDB)
1.343.u$3$(not in LMFDB)
1.343.au$6$(not in LMFDB)
1.343.bl$6$(not in LMFDB)