Properties

Label 1.343.q
Base Field $\F_{7^{3}}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{7^{3}}$
Dimension:  $1$
L-polynomial:  $1 + 16 x + 343 x^{2}$
Frobenius angles:  $\pm0.642177626972$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-31}) \)
Galois group:  $C_2$
Jacobians:  30

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 30 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 360 118080 40341240 13841337600 4747564945800 1628413525650240 558545864060948760 191581231405709030400 65712362363139659273640 22539340290689948104430400

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 360 118080 40341240 13841337600 4747564945800 1628413525650240 558545864060948760 191581231405709030400 65712362363139659273640 22539340290689948104430400

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{7^{3}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-31}) \).
All geometric endomorphisms are defined over $\F_{7^{3}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.343.aq$2$(not in LMFDB)