Properties

Label 1.343.e
Base Field $\F_{7^{3}}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{7^{3}}$
Dimension:  $1$
L-polynomial:  $1 + 4 x + 343 x^{2}$
Frobenius angles:  $\pm0.534441400702$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-339}) \)
Galois group:  $C_2$
Jacobians:  24

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 24 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 348 118320 40349556 13841073600 4747563754188 1628413662198960 558545863056354276 191581231362623174400 65712362363958289997628 22539340290696716579751600

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 348 118320 40349556 13841073600 4747563754188 1628413662198960 558545863056354276 191581231362623174400 65712362363958289997628 22539340290696716579751600

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{7^{3}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-339}) \).
All geometric endomorphisms are defined over $\F_{7^{3}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.343.ae$2$(not in LMFDB)