Properties

Label 1.343.aj
Base Field $\F_{7^{3}}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{7^{3}}$
Dimension:  $1$
L-polynomial:  $1 - 9 x + 343 x^{2}$
Frobenius angles:  $\pm0.421875990562$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1291}) \)
Galois group:  $C_2$
Jacobians:  9

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 9 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 335 118255 40362140 13841156475 4747557406925 1628413605822640 558545865561829235 191581231391159440275 65712362363122476359540 22539340290684918445968775

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 335 118255 40362140 13841156475 4747557406925 1628413605822640 558545865561829235 191581231391159440275 65712362363122476359540 22539340290684918445968775

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{7^{3}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1291}) \).
All geometric endomorphisms are defined over $\F_{7^{3}}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.343.j$2$(not in LMFDB)